Смекни!
smekni.com

К решению нелинейных вариационных задач (стр. 7 из 9)

^J-J^+^b^^e, ^(oY--^^)--O

0f /,<9 Решение. Возьмем Л = ~~s~ ^ °/^ и положим

^-^о)-0 ; ^^(^2); ^-^(О^),

^-^°^ ^--Ц1°^^ ^-:^~-0Значения производных приближенно заменим по формуле

^•-^'(v^)к ^^ ^-

Тогда


41


^-^ о.г

t/ у/п /'} - ^-^

; У^б

; ^^Л -^2-


,7 - I -/ - ^ . ^ ^ Данный интеграл заменяем суммой по формуле прямоугольников

"S-f^d^ ^ с ^o.}+^)^^^^)']-k

Будем иметь а-

Будем иметь а' щ-w'.) <^-/^ (о^ ^•°)^ (W^y^- ^ -. (^)^^S.^ . (^L)^^ ^-^ ^

(W^^^^-0^

Будем иметь а-

-+

Составляем систему уравнений для определения ^ ^ ^ /Л, иско­мой ломаной:

^н^' 2(^'OJ/ ^ -^^^^"^^'^^ ^^0

^ '-[(^•д ^^/+^•г^^X^+ ^.г.^ •^ -о •^гГ^•г^-^/+^^^+^^'^L7г=o. ^-f^'^-^-^^'^^^'^^ ^

<7 &bsol; у ( ^л^. и^л- •9^-^---^

или

^^^^ "-^ -=~^о^ ^ -Ь ^,00^^ - ^ = -0,0^

- ^ -+ ^^ -^ , .о^

-^ + S,00i{^ = - ^0^!L ^

у^^^т; ^--^w; у^о^^^. ^ о,^ш.

___т.е.________________________________________

Х

о

0,2

0,4

0,6

0,8

1

^

о

0,132

0,273

0,402

0,522

0


7

Точное решение исходной задачи:

^TS^^; ^~ (^ ~c' ~ ^"-у^-^

Тогда решение краевой задачи

/Sri%- ^f0^^ ^^0


42

будет: u(r)^(eл-ix)-e/(^-ei)+x.^-q^6sя.(e!^e^)•^

Приведем сравнительную таблицу:'

У

0

0,2

0,4

0,6

0,8

1

^

0

0,13712

0,27341

0,40211

0,52231

0

^-

о

0,13693

0,27142

0,40071

0,52199

0

Таким образом метод Эйлера дает весьма удовлетворительные ре­зультаты в смысле точности.

Рассмотрим случай п. ~? оо в методе Эйлера.

Из(2)имеем: ф (^„...,у^) ^- { F ^-^ЗД +." + +F (Г^, ^, ^^^F(^,y., ^-)^„^^(Х^,^,

^^%}]. Тогда система (3) для определения ^ , ^ , ..., i/^-f будет:

1^^^ k-[0^^o^F^-^ ^^, +Fy^(~/^io^o

-^-^/^^^J-^^^^-^J;//^

Переходя к пределу при /l-> po , получим уравнение Эйлера

которому должна удовлетворять искомая функция у/х.), реализующая экстремум. Аналогично может быть получено основное необходимое усло­вие экстремума в других вариационных задачах.


43

3.3. Алгоритм решения линейной вариационной задачи

Рассмотрим задачу:

Найти ivbin. У tu 3 , где

^ <7

^M--j {^^^^^(^^W-^)^. <J Уо v

у/^^, ^(%^)--^ (1)

Имеем: ^>i-[ [ {^^^^^-IW^-^

^ ^.y/J.,,.[(^L/.^^^.^.^JJ =9^,,^

(2) где ^ . ^(^), fc - W,- К- ^(^)-

Условие минимума ^ , т.е. /э<^ ^О будет:

г0^-^ = ^

-^^ал^-^ = &

-^0^-^ = ^.з (3)

^ '^-^ ^^^ -^ = &^ где 0;=^^/.; (с-^Л -^^) ,S^^~^^ ' ^ ^-^'^-^ & --^. Л--^^. ^-^

После элементарных преобразований система (3) примет вид:

^^ "^ = '^ ^-ys ~ ^

(3')

С^^ уа-ц - ^•г ^ oi^-i.

Сп-у Un--f = ctfi-f где Ci^a, ^ c^^CUi-f--^- ; cl^&, ;

^= &./ + ^- , е./^.-^-^

L-<.


44

Решение системы (3') запишется в виде:

^ . ^- , ^ -. oL_.J^-^ (4)

(7 Cn.-^ u Cn-c ^=-^- ./ ^-S..

Итак, решение задачи (1) сводилось к последовательным вычислени­ям по следующему алгоритму:

1. 0,=.?+A-^ ; йг^^Л. ; 0^=^^^ ;

g^-^ ; &=-^^ ; ^^-^^-. ;

Л i (5)

2. c^ai ; (&bsol;-а^--^- ; c^^a^^f --сг ;

^-^ - -с-г ;

л-с^ ; л^^4- ;^-^-^-;


_ (?6л-^ • и, ^ 6^/»-^ + ,9^^Л-с • •- — ———————— 5 ^Д-< ~ ———————————tt-————————- 1 L- ~

3 Г/ - С^-< • и- - Oif-^ ^ ^f>^(~<-_ • . - о <. л _о ^-<-^r75^-——^———.с--.2^..,лА ,


Этот алгоритм будет корректным при Он ^ О , С^ /^ С? ; устойчивым при ^ > / . Рассмотрим примеры решения вариационных задач по ал­горитму (5) (см.приложение 2).


45

3.4. Понятие о методе Ритца

Проиллюстрируем идею метода на простом примере ( этот пример не имеет аналитического решения). Пусть ищется минимум функционала:

^

У^-М -f (у^ x у)^ W

О

при краевых условиях

'о)-О ; у/О^/ (2)

Приближенное значение будем искать в виде:

^-.x^^-^(^-x)^„,^C^x^(^-^).

При этом первое слагаемое всегда удовлетворяет краевым условиям (2), а остальные слагаемые удовлетворяют однородным краевым условиям у^)=с^^'^=б>,такчтовсясумма ^= х-^-С^зс^-^)ч- „,+ С^Л Y/~^ </ так же удовлетворяет краевым условиям (2).

Рассмотрим решение при n^f, т.е. решение ищем в виде Ч^ х+ ^^{f~'x-)•

Тогда подстановка его в (1) дает:

^- J [ (^ (^)}^ ^(эс + ^ое- С. ое г) 'J^ . о


Г f ^ С, ~ ^ (^ ^)эе + ^ С^эе. i ч- f^^/^--^С. (^ С^^ ^ ^ ^Лос--^ (^ С,) ^

-1^{^с^).^с^-^)^


-Чтобы найти минимум этой функции, приравняем к нулю произвол-

ную ^ -1- (^) - ^(^С,). ^- Сг - о ^

С/ = -0,0 70 f-Р.


46

Тогда решение (1) в первом приближении будет:

и-, х- - о, о У е^де (^-^) = о, ^w^-x^ О, 9£ <^ л- ^ ^

В общем случае для двуточечной вариационной задачи

? J'-JF ^ ^ ')с(^ ; ^).А ^г)- 6 о)

а-приближенное значение можно искать в виде:

u-fy ^ J^L^)^ ^-а)[с^-ё)...^ ^ ^-S) 'J (4)

(j f) ~0-

Итак, основная идея метода Ритца заключается в том, что искомая функция ищется в виде, включаемой несколько произвольных постоянных (параметров) ^ :

у. ^ (^е^с.,.^Сп.) (5)

При этом правая часть S^f^ ^/,. , Сл.) выбирается так, чтобы для лю­бых Ci удовлетворялись граничные условия:

^) - ^(л, С.,.., и.) = / , ^)- ^ С/,.., и. ; ° 6.

Подставляя (5) в функционал (3) получаем функцию от неизвестных С^, Сз.,---, Сп,'.

^J^x^f^,..,^)^ ^ (^е.,.., (^)о(^ - ^,... ^

о'

Тем самым задача об экстремуме функционала сводится к задаче об экстремуме функции от п. независимых параметров ^ ^ ... ^ С^ .


47

3.5. Примеры решения вариационных задач методом Ритца


1) Найти решение вариационной задачи:

•у^ -1 d/' ^"+^у)^ •' у ^ °- ^-0 •?-

Ищем решение в виде: ^ •= с^ Х.(^~ ^ )'= °<^ ( л'- х- J • .^—^-r ''•^(i-

Ул* -- v- / л - -» /* . 1 П . / Л -t ^ '^ Л

Тогда ^ j , П^Y/^- ^Y^-z^^^^^-^^J^ -

/. " о ^Jf^Y/^a-^a^^^ai^-a^^^^^^it^J^ .

-0^^^-^;. ^ -^/^^ ^-^-Отсюда и^ = - s (ус- ^)^ и-(^

Найдем точное решение: /^ - (f^') =6?^^/ ^У ^ "=> ty= ^ с<?^ зе ^ <1 Sc^ ае ^ ^

^)^ .Г^-0 -{^=^/

у^^О iCrC^^i-Ci^n^-f^O U&bsol;--/scn^ у^= ^е- ^^/

Приведем сравнительный анализ численных результатов:


Л!

0

0,25

0,5

0,75

1

^

о

-0,044

-0,070

-0,060

0

/р;

о

-0,052

-0,069

-0,052

0

2) Найти решение нелинейной вариационной задачи: