Смекни!
smekni.com

К решению нелинейных вариационных задач (стр. 8 из 9)

yf^ j -- 7 //i-^}^, ^> ^ ^)- ^

Будем искать решение в виде:

- у^ ^ ^- За: ^^ /^-^^ В такой форме она удовлетворяет краевым условиям:

f ^ ^= ^3-^^^/^-^'У^^ L ^ [i) -^-з-^ ^ff-^)- ^


48

Имеем: ^

y^J=7/^^'^-3J^ ^-^-.^'-^J ]^-

о -Откуда:

М^Й- = {(^^)^E^f^)-^3 ^ 5-fx-^E ^ -^ ^

^оГГ^ L ,

^ ^^~x9J }А=о - ^f^^ffo^f +^0^o-^^-^^

Решение ^/^ = 5,^/3^^- ^^/-Зд:^^ -= 4^-3 г -з,о^/3^--г^

г^

О

0,25

0,5

0,75

1

^

4

2,6798

1,7397

1,1798

1

^^-Зг.

4

3,2500

2,5000

1,7500

1

^

Пока о достоверности решения у /• /а^) судить очень трудно, не­обходимы более высокие приближения.

3) Найти решение вариационной задачи

н^у] -JY.?v^v^, yfo)^)-o.

С?


имеем:

Точное решение:

Р = J?JC.Vi- U

^-^/' ^-^//^

Общее решение: у "= ^ (? -i- Cx.o. Из условий ufo)-=^ , и^^у^о

е,- -1—— --^

Тогда точное решение задачи будет:


49


^ -X

е -е е^е^


- х ^ ^


/7)Еfb ^w-л - ^^^'- e~x;- ^ •

Методом Ритца в первом приближении решение ищем в виде:

<у= ех(^-ус)-. с(^м-^), у^е^-^^};

7r^j=JС c(^^^^з)+aC^'-^з>^^^^-^ -.^jj<^- %c^^a^^^};

(р^с)-^^^ ^у^е^о ^ с^-^.

Итак решение по Ритцу:

^-i-^

Сравнительная таблица имеет вид:

Л.

0

0,5

1

1,5

2

у^

0

-0,275

-0,3571

-0,2758

0

^г)

о

-0,2126

-0,3520

-0,3258

0


50

3.6. Об одном подходе к решению нелинейных вариационных задач

В отличии от метода Ритца, искомую функцию в двуточечной вариа­ционной задаче зададим в виде:

r-^^f^-^^

При этом граничные условия и{а ) = А, ^• (б/=- /З выполняются, а ^ является искомым параметром. Решим этим методом пример из пункта 3.3.

Имеем:

Г-°&bsol;^ ^ - х ^е - ^j ]Т^)^Г^-^^^^ -j^-w

л/

Минимальное значение функционала J соответствует минимальному значению функции У/о^ . Найдем /^»г- f(<jL) :

pi fi}-rAU&bsol;' + ( -L_}' - ^=^L - J:__ .п ^ <^-Ь^-/^' [^^М ~ ^о/-/;^ (л^)^ ~~0^

(^ ^^)(^)^(&^)^^&bsol;^^^^/^-^ п

Так как -^^У^^/^^и A f^V^ -^W^<9 то корень уравнения нахо-дится в промежутке [1;1Д]. Представим (*) в виде </=с/-^ ^ -f^f^^^M из условия fttd)c(^W)^ ^ ^X^/,'f получим С. =-0,01.

Поэтому сходящийся алгоритм будет:

с4 ^ = о4 - оо< (((( ^ i-^)^ ~ ^)^ - ^4 - /) ^

Берем Лу =1,05 и по формуле {**) последовательно вычислим о/< =1,04256,....., ^=1,03004, о4=1,02991, с/^= 1,02990. Поэтому примем ц/^ 1,0299 ^1,03; тогда решение будет:

^а.^е^^^


51

Решение по предложенному методу и методу Ритца почти совпадают:

0

0,2

0,4

0,6

0,8

1

0

0,2111

0,4166

06166

0,8111

1

0

0,1906

0,3902

0,5968

0,7981

1

Итак, предложенный подход к решению задач может быть применен, т.е. ему посильны и нелинейные задачи.

В частности, рассматривая нелинейную вариационную задачу на

отыскание ги-^ п- функционала

^/-

У /У^А7 - / f/^ ^y)ol^

с краевыми условиями ^/о^= с? ; у /"•/) -= У ;

будем отыскивать решение на кривой ^ -^ ^ ^ . Тогда функцио­

нал примет вид:

У-J/: (J, ^-') &bsol; я^^^/Г^-г:^ х. ^JA =

.f^^L, ^ W-с^^.,W ( ^-^ -й^-7/д if.i.ci-')

и задача об определении его л^л. сводится к отысканию пъС ^1{oi)

га). ^=^,. ^ -^ - ^; т - ^,

-Г(^)^; f"(^)^o:

Поэтому при</= 11^- //<4/примет наименьшее значение на кривой и-, r^^-wm g ^^ у , азначение ^ ^/^1^1,183.


52

3.7. К методу Ритца для двумерных задач

Для функционала •^- ^J '( v-' ^ ^^Р^)^ <^ уравнение Эйлера- Лагранжа примут вид:

JiL-iL^l-.-S-/2L ^ ъг-ъг ъ^&bsol;ър) осЛм / 5где?~ эх '

^ ^-? = ^ •

Пусть ищется экстремум функционала

f[:iC^n-J[h^^- г<^-?^4 .средифунк-ций, обращающих в нуль на границе квадрата, ограниченного прямыми dc^^-f •> с/ = ± d • При этом мы приходим по существу к задаче Дирихле для уравнения Пуассона ^ у. у- i^y ="У С^^}^

г^;Г^г^/;/^ ^/;-/^г^-/;~/;=<9 (см.рис.12)

Эта классическая задача не решается | точно с помощью элементарных функций. Приближенное решение ищем при ^(у/^)~=^<———— ———*77"^.

по методу Ритца в виде i-i ^f^~^)('f~^2'} Подстановка в исходный функционал дает •

f^f[W(^ ^^Г. ^ ^.г.с(^х^}}Л^. ^j-^ ^с^-Г^)

Тогда Г1^)-^-^С- ^---0- С--^ :

ПФ^-^о, ^ у ^ й=-^, uig(^)W

решение задачи при первом приближении.

Сравнение с точной формулой (имеющий вид бесконечного ряда) показывает, что погрешность этого приближенного решения в среднем равна 1,5%, а погрешность в значении функционала около 0,2%. Таким об­разом, идея метода Ритца распространяется для двумерных (и, вообще, для многомерных) задач.


53

ЗАКЛЮЧЕНИЕ

Дипломная работа посвящена методам решения экстремальных за­дач, при этом приведены основные идеи различных методов, которые поч­ти совсем не рассматриваются в школьном и педвузовском курсе матема­тики. Таким образом, заполнен существенный пробел в математическом образовании и подготовлен материал для изучения основ современной прикладной математики в классах с углубленным изучением математики.

Основные выводы по дипломной работе:

1. В краткой реферативной форме изложены элементарные методы решения экстремальных задач, основанные на известных неравенствах ти­па Коши.

2. Приведены основные идеи методики решения задач математиче­ского программирования: три разновидности задач линейного программи­рования, принципиально различные примеры решения задач нелинейного программирования.

3. Изложены методы решения двухточечной краевой задачи; дан вы­вод сходящегося алгоритма и на его основе решены на ЭВМ ряд линейных задач с переменными коэффициентами.

4. Излагается вариационная задача с выводом уравнений Эйлера-Лагранжа и на их основе приводятся примеры аналитического решения. На основе идей метода конечных разностей получен алгоритм для линейной вариационной задачи и на его основе решены ряд вариационных азадач на ЭВМ; результаты приведены в приложениях.

5. Методом Ритца решены ряд нелинейных задач, одна двумерная за­дача. На основе решения модельных задач подтверждается достоверность полученных результатов.

6. Приведена новая модификация метода Ритца, для которой нели­нейность вариационной задачи не вызывает особых затруднений.


ЛИТЕРАТУРА

1. Алгебра и начала анализа 10-11 кл., М., 1992.

2. Белман Р., Калаба Р. Квазилинеоризация и нелинейные краевые задачи. "Мир", М., 1968.

3. Блох В.И. Теория упругости. Харьков, изд-во ХГУ, 1964.

4. Буслаева И.П. Решение задач без использования производной. Матема­тика в школе № 5 -1995.

5. Возняк Г.М., Гусев В.А. Прикладные задачи на экстремумы. М., 1985, "Просвещение".

6. Данко П.Е., Попов А.Г., Кожевникова Г.Я. Высшая математика в упражнениях и задачах. М., "Высшая школа", 1986.

7. Демидович Б.П., Марои И.А., Шувалова Э.З. Численные методы анали­за. М., "Наука", 1967.

8. Дородницын А.Р. Применение малого параметра к численному реше­нию дифференциальных уравнений. В книге "Современные проблемы систематической физики и вычислительной математики". "Наука", М., ^ 1982.

9. Камке Э. Справочник по обыкновенным дифференциальным уравне-« ниям .- "Наука", М., 1972.