Смекни!
smekni.com

Математический расчет объема выпуска продукции (стр. 3 из 4)

Свободные переменные Базисные переменные
X2=0X4=0X9=0 X1=50X3=30X5=190X6=90X7=0X8=50

Решение опорное, но не оптимальное.

Разрешающий столбец № 2 (вектор А2 так как только у него есть отрицательная оценка плана)

Найдем разрешающий столбец:

БП C1=25 С2=20 C3=50 C4=0 C5=0 C6=0 C7=0 C8=0 C9=0
Сб Вi A1 А2 A3 A4 A5 A6 A7 A8 A9
1 A1 25 20 1 0 0 0,2 0 0 0 -0,6 -1
2 A5 0 210 0 0 0 -0,8 1 0 0 0.4 -3
3 A6 0 95 0 0 0 -0,2 0 1 0 0,1 2/3
4 A7 0 30 0 0 0 -0,2 0 0 1 0.6 1
5 A2 20 50 0 1 0 0 0 0 0 1 0
6 A3 50 30 0 0 1 0 0 0 0 0 1
∆j=W(j)-cj 3000 0 0 0 5 0 0 0 5 25

соответствует строке №5 и вектору А8

Меняем А8—А5

Находим пробное решение, для этого все свободные переменные приравниваем к 0, а базисные к bi

Свободные переменные Базисные переменные
X4=0X8=0X9=0 X1=20X2=50X3=30X5=210X6=95X7=30

Решение ОПОРНОЕ и ОПТИМАЛЬНОЕ! Все коэффициенты в строке ∆j≥0

Для получения максимальной прибыли необходимо выпускать товар в следующем ассортименте:

Изделия 1-го типа в размере х1=20 шт

Изделия 2-го типа в размере х2=50шт

Изделия 3-го типа в размере х3=30шт

При таком выпуске получим максимальную прибыль в размере W*=3000$

3. Изменение коэффициентов целевой функции

Базисная переменная

Изменение коэффициента целевой функции базисной переменной влияет на оценки плана небазисных переменных. Для базисной переменной диапазон устойчивости, в котором может меняться cj, оставляя оптимальным текущее решение, задается выражением:

где

Если нет коэффициентов

то

Если нет коэффициентов

то

1) X1

c1=25


2) X2

C2=20

Нет коэффициентов

то

3) X3

C3=50

Нет коэффициентов

то

4) X5

C5=0


5) X6

C6=0

6) X7

C7=0

Небазисная переменная

Для небазисной переменной диапазон устойчивости в котором cj может меняться, оставляя текущее решение оптимальным задается выражением:

где

-оценка плана переменной
, отвечающее оптимальному решению.

1) x4 с4=0

=5

2) Х8 с8=0

=5

3) Х9 с9=0

=25

4. Изменение компонент вектора ограничений

базисная дополнительная переменная.

Если дополнительная переменная i-го ограничения базисная, то ее значение дает диапазон изменения, в котором соответствующая компонента bi может уменьшаться (увеличиваться, если ограничение ≥)

Решение остается оптимальным в диапазоне:

где

для ограничения ≤

для ограничения ≥

где

-значение соответствующее дополнительной пересенной

1) Х5 в2=600

ограничение ≤

2) Х6 в3=150

3) Х7 в4=50

Небазисная дополнительная переменная:

1) x4

b1=400

2) x8

b5=50


3) x9

b6=30

1) От итоговой симплекс-таблицы прямой задачи перейдем к решению двойственной.

Сформулируем двойственную задачу:

- Так как прямая задача- задача на максимум, то двойственная ей задача на минимум.

- Коэффициенты функции цели прямой задачи будут коэффициентами вектора ограничений для двойственной.

- Коэффициенты вектора ограничений прямой задачи будут коэффициентами функции цели для двойственной.

- Ограничения двойственной задачи будут иметь знак ≥


Прямая задача
Двойственная задача

Для удобства перехода между прямой и двойственной задачами подпишем внутри последней симплекс-таблицы соответствующие переменные двойственной задачи