БП | U7 | U8 | U9 | U1 | U2 | U3 | U4 | U5 | U6 | |||
Двойств | Вi | A1 | А2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | ||
1 | A1 | U7 | 20 | 1 | 0 | 0 | 0,2 | 0 | 0 | 0 | -0,6 | -1 |
2 | A5 | U2 | 210 | 0 | 0 | 0 | -0,8 | 1 | 0 | 0 | 0.4 | -3 |
3 | A6 | U3 | 95 | 0 | 0 | 0 | -0,2 | 0 | 1 | 0 | 0,1 | 2/3 |
4 | A7 | U4 | 30 | 0 | 0 | 0 | -0,2 | 0 | 0 | 1 | 0.6 | 1 |
5 | A2 | U8 | 50 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
6 | A3 | U9 | 30 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
∆j=W(j)-cj | 3000 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 5 | 25 |
Итоговая симплекс-таблица двойственной задачи:
БП | Сбаз | Вi | C1=400 | С2=600 | C3=150 | C4=50 | C5=50 | C6=30 | C7=0 | C8=0 | C9=0 | |
U1 | U2 | U3 | U4 | U5 | U6 | U7 | U8 | U9 | ||||
1 | U1 | 400 | 5 | 1 | 0.8 | 0.2 | 0.2 | 0 | 0 | -0.2 | 0 | 0 |
2 | U5 | 50 | 5 | 0 | -0.4 | -0.1 | -0.6 | 1 | 0 | 0.6 | -1 | 0 |
3 | U6 | 30 | 25 | 0 | 3 | -2/3 | -1 | 0 | 1 | 1 | 0 | -1 |
∆j=Z(j)-cj | 0 | -210 | -95 | 30 | 0 | 0 | -20 | -50 | -30 |
Оптимальным решением двойственной задачи будет:
Свободные переменные | Базисные переменные |
U2=0U3=0U4=0U7=0U8=0U9=0 | U1=5U5=5U6=25 |
5) Целочисленное решение методом отсечения.
Так как в ходе решения нами было найдено целочисленное решение задачи максимум, то поставленная перед нами задача полностью решена!
Для получения максимальной прибыли рекомендуется выпускать изделия в следующем ассортименте:
Изделия Типа 1 в размере х1=20 шт
Изделия Типа 2 в размере х2=50 шт
Изделия Типа 3 в размере х3=30 шт
При таком выпуске прибыль будет максимальна и составит W*=3000 $