Смекни!
smekni.com

Лекции по математической статистике (стр. 5 из 5)

Случай C.

Для этого случая подходят коэффициенты, о котором мы расскажем в случае I.

Случай D.

Используется биссериальный коэффициент кореляции:

- среднее по x объектов имеющих 1 по y.

- среднее по x объектов имеющих 0 по y.

Sx – стандартное отклонение

Случай E.

Тетрахорический коэффициент кореляции:

Более удобно при расчете обращаться к статическим таблицам, содержащим вычисления из этого уравнения. Они составлены при условии, что bc/ad>1. В противном случае таблица содержит ad/bc и величина тетрахорического коэффициента будет отрицательной.

Случай F.

Удовлетворительного коэффициента не разработано, рекомендуется продположить нормальное распределение для x и использовать биссериальный ранговый коэффициент (см. случай G).

Случай G.

Биссериальный коэффициент:

u – ордината нормального распределения.

Случай H.

Используется коэффициент ранговой кореляции Спирмана:

В том случае, если при измерении встречается связанные ранги, это уравнение не подходит в качестве меры кореляции.

Связанный ранг возникает в том случае, если у некоторых объектов получено одинаковое значение переменной. В этом случае ранги, которые должны были бы получить эти объекты суммируются и делятся на количество объектов и каждый получает, пролученный при вычислении ранг.

До сих пор коэффициенты кореляции представляли из себя или могли быть объяснены в терминах произведения моментов. Коэффициент кореляции, не связвнный с моментами построен Кендаллом и называется τ – Кендалла

Случай I.

Для этого случая коэффициенты не разработаны, рекомендуется преобразовать оценки по y в ранги и найти или коэффициент Спирмана или Кендалла

Бисериальная ранговая кореляция:

P – сумма всех совпадений; Q – сумма всех инверсий;

n0– число объектов при нулевой дихотомии; n1– число объектов при единичной дихотомии.