Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
Вятский государственный гуманитарный университет
Кафедра математического анализа и методики
преподавания математики
Выпускная квалификационная работа
Выполнил:
студент V курса
математического факультета
Гнусов В.В.
___________________________
Научный руководитель:
старший преподаватель кафедры
алгебры и геометрии
Семенов А.Н..
___________________________
Рецензент:
кандидат физ.-мат. наук, доцент
кафедры алгебры и геометрии
Ковязина Е.М.
___________________________
Допущена к защите в ГАК
Зав. кафедрой________________ Вечтомов Е.М.
« »________________
Декан факультета___________________ Варанкина В.И.
« »________________
Киров 2005
Содержание.
ГЛАВА 1. ДЕЛИМОСТЬ В КОЛЬЦЕ ЧИСЕЛ ГАУССА.3
1.1 ОБРАТИМЫЕ И СОЮЗНЫЕ ЭЛЕМЕНТЫ.4
1.4 ОСНОВНАЯ ТЕОРЕМА АРИФМЕТИКИ.9
ГЛАВА 2. ПРОСТЫЕ ЧИСЛА ГАУССА.12
ГЛАВА 3. ПРИМЕНЕНИЕ ЧИСЕЛ ГАУССА.17
Кольцо целых комплексных чисел
было открыто Карлом Гауссом и названо в его честь гауссовым.К. Гаусс пришел к мысли о возможности и необходимости расширения понятия целого числа в связи с поиском алгоритмов решения сравнений второй степени. Он перенес понятие целого числа на числа вида
, где — произвольные целые числа, а — является корнем уравнения На данном множестве К. Гаусс впервые построил теорию делимости, аналогичную теории делимости целых чисел. Он обосновал справедливость основных свойств делимости; показал, что в кольце комплексных чисел существует только четыре обратимых элемента: ; доказал справедливость теоремы о делении с остатком, теоремы о единственности разложения на простые множители; показал какие простые натуральные числа останутся простыми и в кольце ; выяснил природу простых целых комплексных чисел.Развитая К. Гауссом теория, описанная в его труде «Арифметические исследования», явилась фундаментальным открытием для теории чисел и алгебры.
В выпускной работе были поставлены следующие цели:
1. Развить теорию делимости в кольце чисел Гаусса.
2. Выяснить природу простых гауссовых чисел.
3. Показать применение гауссовых чисел при решении обычных диофантовых задач.
Рассмотрим множество комплексных чисел. По аналогии с множеством действительных чисел в нем можно выделить некоторое подмножество целых чисел. Множество чисел вида
, где назовем целыми комплексными числами или гауссовыми числами. Нетрудно проверить, что для этого множества выполняются аксиомы кольца. Таким образом, это множество комплексных чисел является кольцом и называется кольцом целых чисел Гаусса. Обозначим его как , так как оно является расширением кольца элементом: .Поскольку кольцо гауссовых чисел является подмножеством комплексных чисел, то для него справедливы некоторые определения и свойства комплексных чисел. Так, например, каждому гауссовому числу
соответствует вектор с началом в точке и с концом в . Следовательно, модуль гауссова числа есть . Заметим, что в рассматриваемом множестве, подмодульное выражение всегда есть число неотрицательное целое. Поэтому в некоторых случаях удобнее пользоваться нормой, то есть квадратом модуля. Таким образом . Можно выделить следующие свойства нормы. Для любых гауссовых чисел справедливо: (1) (2) (3) (4) (5)Здесь и далее
— множество натуральных чисел, то есть целых положительных чисел.Справедливость данных свойств тривиальным образом проверяется с помощью модуля. Попутно заметим, что (2), (3), (5) справедливы и для любых комплексных чисел.
Кольцо гауссовых чисел — это коммутативное кольцо без делителей 0, так как оно является подкольцом поля комплексных чисел. Отсюда следует мультипликативная сократимость кольца
, то есть (6)Посмотрим, какие гауссовы числа будут обратимыми. Нейтральным по умножению является
. Если гауссово число обратимо, то, по определению, существует такое, что . Переходя к нормам, согласно свойству 3, получим . Но эти нормы натуральны, следовательно . Значит, по свойству 4, . Обратно, все элементы данного множества обратимы, поскольку . Следовательно, обратимыми будут числа с нормой равной единице, то есть , .Как видно не все гауссовы числа будут обратимы. Поэтому интересно рассмотреть вопрос делимости. Как обычно, мы говорим, что
делится на , если существует такое, что .Для любых гауссовых чисел , а также обратимых справедливы свойства. (7) (8) (9) (10) , где (11) (12)Легко проверяются (8), (9), (11), (12). Справедливость (7) следует из (2), а (10) следует из (6). В силу свойства (9), элементы множества
ведут себя по отношению к делимости точно так же как и , и называются союзными с . Поэтому естественно рассматривать делимость гауссовых чисел с точностью до союзности. Геометрически на комплексной плоскости союзные числа будут отличаться друг от друга поворотом на угол кратный .