Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
Вятский государственный гуманитарный университет
Кафедра математического анализа и методики
преподавания математики
Выпускная квалификационная работа
Выполнил:
студент V курса
математического факультета
Гнусов В.В.
___________________________
Научный руководитель:
старший преподаватель кафедры
алгебры и геометрии
Семенов А.Н..
___________________________
Рецензент:
кандидат физ.-мат. наук, доцент
кафедры алгебры и геометрии
Ковязина Е.М.
___________________________
Допущена к защите в ГАК
Зав. кафедрой________________ Вечтомов Е.М.
« »________________
Декан факультета___________________ Варанкина В.И.
« »________________
Киров 2005
Содержание.
ГЛАВА 1. ДЕЛИМОСТЬ В КОЛЬЦЕ ЧИСЕЛ ГАУССА.3
1.1 ОБРАТИМЫЕ И СОЮЗНЫЕ ЭЛЕМЕНТЫ.4
1.4 ОСНОВНАЯ ТЕОРЕМА АРИФМЕТИКИ.9
ГЛАВА 2. ПРОСТЫЕ ЧИСЛА ГАУССА.12
ГЛАВА 3. ПРИМЕНЕНИЕ ЧИСЕЛ ГАУССА.17
Кольцо целых комплексных чисел
К. Гаусс пришел к мысли о возможности и необходимости расширения понятия целого числа в связи с поиском алгоритмов решения сравнений второй степени. Он перенес понятие целого числа на числа вида
Развитая К. Гауссом теория, описанная в его труде «Арифметические исследования», явилась фундаментальным открытием для теории чисел и алгебры.
В выпускной работе были поставлены следующие цели:
1. Развить теорию делимости в кольце чисел Гаусса.
2. Выяснить природу простых гауссовых чисел.
3. Показать применение гауссовых чисел при решении обычных диофантовых задач.
Рассмотрим множество комплексных чисел. По аналогии с множеством действительных чисел в нем можно выделить некоторое подмножество целых чисел. Множество чисел вида
Поскольку кольцо гауссовых чисел является подмножеством комплексных чисел, то для него справедливы некоторые определения и свойства комплексных чисел. Так, например, каждому гауссовому числу
Здесь и далее
Справедливость данных свойств тривиальным образом проверяется с помощью модуля. Попутно заметим, что (2), (3), (5) справедливы и для любых комплексных чисел.
Кольцо гауссовых чисел — это коммутативное кольцо без делителей 0, так как оно является подкольцом поля комплексных чисел. Отсюда следует мультипликативная сократимость кольца
Посмотрим, какие гауссовы числа будут обратимыми. Нейтральным по умножению является
Как видно не все гауссовы числа будут обратимы. Поэтому интересно рассмотреть вопрос делимости. Как обычно, мы говорим, что
Легко проверяются (8), (9), (11), (12). Справедливость (7) следует из (2), а (10) следует из (6). В силу свойства (9), элементы множества