Смекни!
smekni.com

Корреляционный метод (стр. 3 из 3)

1.5. Коэффициент ранговой корреляции Спирмена


Если потребуется установить связь между двумя признаками, значения которых в генеральной совокупности распределены не по нормальному закону, т. е. предположение о том, что двумерная выборка (xi и yi) получена из двумерной нормальной генеральной совокупности, не принимается, то можно воспользоваться коэффициентом ранговой корреляции Спирмена (

):
(1.2)
где: dx и dy – ранги показателей xi и yi;
n – число коррелируемых пар.

Коэффициент ранговой корреляции также имеет пределы 1 и –1. Если ранги одинаковы для всех значений xi и yi, то все разности рангов (dx - dy) = 0 и = 1. Если ранги xi и yi расположены в обратном порядке, то
= -1. Таким образом, коэффициент ранговой корреляции является мерой совпадения рангов значений xi и yi.
Когда ранги всех значений xi и yiстрого совпадают или расположены в обратном порядке, между случайными величинами Х и Y существует функциональная зависимость, причем эта зависимость не обязательно линейная, как в случае с коэффициентом линейной корреляции Браве-Пирсона, а может быть любой монотонной зависимостью (т. е. постоянно возрастающей или постоянно убывающей зависимостью). Если зависимость монотонно возрастающая, то ранги значений xiи yi совпадают и
= 1; если зависимость монотонно убывающая, то ранги обратны и
= –1. Следовательно, коэффициент ранговой корреляции является мерой любой монотонной зависимости между случайными величинами Х и Y.
Из формулы (8.2) видно, что для вычисления
необходимо сначала проставить ранги (dxи dy) показателей xi и yi, найти разности рангов (dx - dy) для каждой пары показателей и квадраты этих разностей (dx - dy)2. Зная эти значения, находятся суммы
, учитывая, что
всегда равна нулю. Затем, вычислив значение
, необходимо определить достоверность найденного коэффициента корреляции, сравнив его фактическое значение с табличным (табл. 9 приложения). Если
, то можно говорить о том, что между признаками наблюдается достоверная взаимосвязь. Если
, то между признаками наблюдается недостоверная корреляционная взаимосвязь.
Коэффициент ранговой корреляции Спирмена вычисляется значительно проще, чем коэффициент корреляции Браве-Пирсона при одних и тех же исходных данных, поскольку при вычислении используются ранги, представляющие собой обычно целые числа.
Коэффициент ранговой корреляции целесообразно использовать в следующих случаях:

1. Если экспериментальные данные представляют собой точно измеренные значения признаков Х и Y и требуется быстро найти приближенную оценку коэффициента корреляции. Тогда даже в случае двумерного нормального распределения генеральной совокупности можно воспользоваться коэффициентом ранговой корреляции вместо точного коэффициента корреляции Браве-Пирсона. Вычисления будут существенно проще, а точность оценки генерального параметра р с помощью коэффициента

при больших объемах выборки составляет 91,2% по отношению к точности оценки по коэффициенту корреляций.

2. Когда значения xi и (или) yi заданы в порядковой шкале (например, оценки судей в баллах, места на соревнованиях, количественные градации качественных признаков), т. е. когда признаки не могут быть точно измерены, но их наблюдаемые значения могут быть расставлены в определенном порядке.

Пример 1.6. Определить достоверность взаимосвязи между показателями веса и максимального количества сгибания и разгибания рук в упоре лежа у 10 исследуемых с помощью расчета рангового коэффициента корреляции, если данные выборок таковы:

xi, кг ~ 55; 45; 43; 47; 47; 51; 48; 60; 53; 50
yi, кол-во раз ~ 26; 20; 25; 22; 27; 28; 16; 15; 18; 24

Решение

(1)

где: dx и dy — ранги показателей х и у;
n — число коррелируемых пар или исследуемых.

2. Данные тестирования занести в рабочую таблицу и сделать необходимые расчеты.

xi dx yi dy
55 9 26 9 0 0
45 2 20 4 -2 4
43 1 25 7 -6 36
47 3.5 22 5 -1.5 2.25
47 3.5 7 8 -4.5 20.25
51 7 28 10 -3 9
48 5 16 2 3 9
60 10 15 1 9 81
53 8 18 3 5 25
50 6 24 6 0 0
= 0
= 186,5

Тогда


3. Сравнить расчетное значение рангового коэффициента корреляции (rф = -0,13) с табличным значением для n = 10 при a = 5% (табл.2 приложения) и сделать вывод.

Вывод:
1) т.к. rф = -0,13 < 0, то между данными выборок наблюдается прямая отрицательная взаимосвязь, т.е. увеличением показателей веса вызывает снижение максимального количество сгибаний и разгибаний рук в упоре лежа в группе исследуемых;
2) т.к. rф = -0,13 < rst = 0,64 для n = 10 при a = 5%, то с уверенностью b = 95% можно говорить о том, что выявленная зависимость недостоверна.


Задания по теме лекции
Самостоятельно решите следующие задачи:


Задача 1. Определить достоверность взаимосвязи между показателями длины прыжков с места и с разбега 10 исследуемых с помощью расчета рангового коэффициента корреляции, если данные выборок таковы:
Прыжок с места: xi, см ~ 216; 180; 230; 224; 185; 209; 218; 250; 249; 254.
Прыжок с разбега: yi, см ~ 313; 275; 330; 320; 300; 315; 315; 370; 365; 330.

Задача 2. Определить достоверность взаимосвязи между показателями становой динамометрии и количеством подтягиваний на перекладине у 9 исследуемых с помощью расчета рангового коэффициента корреляции, если данные выборок таковы:
Становая динамометрия: xi, кГ ~ 156; 130; 143; 124; 135; 125; 138; 141; 139.
Подтягивание на перекладине: yi, кол-во раз ~ 16; 15; 20; 20; 16; 15; 15; 20; 15.

Задача 3. Определить достоверность взаимосвязи между показателями индекса Кетле и местами в соревнованиях у 11 акробатов с помощью расчета рангового коэффициента корреляции, если данные выборок таковы:
Индекс Кетле: xi , г/см ~ 389; 370; 382; 358; 358; 366; 370; 354; 382; 363; 350.
Место: yi, ~ 5; 2; 6; 10; 11; 1; 3; 9; 4; 7; 8.