КОРРЕЛЯЦИОННЫЙ АНАЛИЗ Еще Гиппократ обратил внимание на то, что между телосложением и темпераментом людей, между строением их тела и предрасположенностью к заболеваниям существует определенная связь. Чаще всего рассматриваются простейшие ситуации, когда в ходе исследования измеряют значения только одного варьирующего признака генеральной совокупности. Остальные признаки либо считаются постоянными для данной совокупности, либо относятся к случайным факторам, определяющим варьирование исследуемого признака. Как правило, исследования в спорте значительно сложнее и носят комплексный характер. Например, при контроле за ходом тренировочного процесса измеряется спортивный результат, и одновременно может оцениваться целый ряд биомеханических, физиологических, биохимических и других параметров (скорость и ускорения общего центра масс и отдельных звеньев тела, углы в суставах, сила мышц, показатели систем дыхания и кровообращения, объем физической нагрузки и энергозатраты организма на ее выполнение и т. д.). При этом часто возникает вопрос о взаимосвязи отдельных признаков. Например, как зависит спортивный результат от некоторых элементов техники спортивных движений? как связаны энергозатраты организма с объемом физической нагрузки определенного вида? насколько точно по результатам выполнения некоторых стандартных упражнений можно судить о потенциальных возможностях человека в конкретном виде спортивной деятельности? и т. п. Во всех этих случаях внимание исследователя привлекает зависимость между различными величинами, описывающими интересующие его признаки. Этой цели служит математическое понятие функции, имеющее в виду случаи, когда определенному значению одной (независимой) переменной Х, называемой аргументом, соответствует определенное значение другой (зависимой) переменной Y, называемой функцией. Однозначная зависимость между переменными величинами Y и X называется функциональной, т.е. Y = f(X) (“игрек есть функция от икс”). Например, в функции Y = 2X каждому значению X соответствует в два раза большее значение Y. В функции Y = 2X2 каждому значению Y соответствует 2 определенных значения X. Графически это выглядит так (рис.1.1, 1.2 соответственно): Рис.1.1. Рис.1.2. Но такого рода однозначные или функциональные связи между переменными величинами встречаются не всегда. Известно, например, что между ростом (длиной тела) и массой человека существует положительная связь: более высокие индивиды имеют обычно и большую массу, чем индивиды низкого роста. То же наблюдается и в отношении качественных признаков: блондины, как правило, имеют голубые, а брюнеты — карие глаза. Однако из этого правила имеются исключения, когда сравнительно низкорослые индивиды оказываются тяжелее высокорослых, и среди населения хотя и нечасто, но встречаются кареглазые блондины и голубоглазые брюнеты. Причина таких “исключений” в том, что каждый биологический признак, выражаясь математическим языком, является функцией многих переменных; на его величине сказывается влияние и генетических и средовых факторов, в том числе и случайных, что вызывает варьирование признаков. Отсюда зависимость между ними приобретает не функциональный, а статистический характер, когда определенному значению одного признака, рассматриваемого в качестве независимой переменной, соответствует не одно и то же числовое значение, а целая гамма распределяемых в вариационный ряд числовых значений другого признака, рассматриваемого в качестве независимой переменной. Такого рода зависимость между переменными величинами называется корреляционной или корреляцией (термин “корреляция” происходит от лат. correlatio — соотношение, связь). При этом данный вид взаимосвязи между признаками проявляется в том, что при изменении одной из величин изменяется среднее значение другой. Если функциональные связи одинаково легко обнаружить и на единичных, и на групповых объектах, то этого нельзя сказать о связях корреляционных, которые изучаются только на групповых объектах методами математической статистики. Задача корреляционного анализа сводится к установлению направления и формы связи между признаками, измерению ее тесноты и к оценке достоверности выборочных показателей корреляции. Корреляционная связь между признаками может быть линейной и криволинейной (нелинейной), положительной и отрицательной. Прямая корреляция отражает однотипность в изменении признаков: с увеличением значений первого признака увеличиваются значения и другого, или с уменьшением первого уменьшается второй. Обратная корреляция указывает на увеличение первого признака при уменьшении второго или уменьшение первого признака при увеличении второго. Например, больший прыжок и большее количество тренировок — прямая корреляция, уменьшение времени, затраченного на преодоление дистанции, и большее количество тренировок — обратная корреляция. 1.2. Корреляционные поля и цель их построения Рис.1.3. Графическая интерпретация взаимосвязи между показателями. Если р = 1 или р = -1, то между случайными величинами Х и Y существует линейная функциональная зависимость (Y = c + dX). В этом случае говорят о полной корреляции. При р = 1 значения xi, yi определяют точки, лежащие на прямой линии, имеющей положительный наклон (с увеличением xi значения yi также увеличиваются), при р = -1 прямая имеет отрицательный наклон (рис.1.3, б). В промежуточных случаях (-1 < p < 1) точки, соответствующие значениям xi, yi, попадают в область, ограниченную некоторым эллипсом (рис.1.3, в. г), причем при p > 0 имеет место положительная корреляция (с увеличением xi значения yi имеют тенденцию к возрастанию), при p < 0 корреляция отрицательная. Чем ближе р к , тем уже эллипс и тем теснее экспериментальные значения группируются около прямой линии. Здесь же следует обратить внимание на то, что линия, вдоль которой группируются точки, может быть не только прямой, а иметь любую другую форму: парабола, гипербола и т. д. В этих случаях мы рассматривали бы так называемую, нелинейную (или криволинейную) корреляцию (рис.1.3, д). Таким образом, визуальный анализ корреляционного поля помогает выявить не только наличия статистической зависимости (линейную или нелинейную) между исследуемыми признаками, но и ее тесноту и форму. Это имеет существенное значение для следующего шага в анализе ѕ выбора и вычисления соответствующего коэффициента корреляции. Корреляционную зависимость между признаками можно описывать разными способами. В частности, любая форма связи может быть выражена уравнением общего вида Y = f(X), где признак Y – зависимая переменная, или функция от независимой переменной X, называемой аргументом. Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т. д. Просмотрите примеры решения задач.Пример 1.2. Определить форму и направление взаимосвязи между показателями пульса покоя и абсолютными значениями пробы PWC170 у 13 исследуемых с помощью построения графика корреляционного поля, если данные выборок таковы: Решение Вывод: график данного корреляционного поля позволяет предположить, что, возможно, между пульса покоя и абсолютными значениями пробы PWC170 у исследуемой группы наблюдается прямая, обратная зависимость, т.е. со снижением показателя пульса покоя происходит увеличение абсолютных значений PWC170. Самостоятельно решите следующие задачи: Задача 1 . Определить форму и направление взаимосвязи между результатами в беге на первой и второй половине дистанции 400 м у 13 исследуемых с помощью построения графика корреляционного поля, если данные выборок таковы: xi , с ~ 25,2; 26,4; 26,0; 25,8; 24,9; 25,7; 25,7; 25,7; 26,1; 25,8; 25,9; 26,2; 25,6 (первые 200 м). yi , с ~ 30,8; 29,4; 30,2; 30,5; 31,4; 30,3; 30,4; 30,5; 29,9; 30,4; 30,3; 30,5; 30,6 (последние 200 м). Задача 2 . Определить форму и направление взаимосвязи между результатами в толчке штанги и прыжка в высоту с места у 12 тяжелоатлетов весовой категории до 60 кг с помощью построения графика корре-ляционного поля, если данные выборок таковы: Результат в толчке: xi , кг ~ 107,5; 110; 110; 115; 115; 107,5; 107,5; 120; 122,5; 112,5; 120; 110. Прыжок в высоту с места: yi , см ~ 57; 60; 58; 61; 63; 58; 55; 64; 65; 64; 66; 61. Задача 3 . Определить форму и направление взаимосвязи между результатами кистевой динамометрии правой и левой рук у 7 школьников с помощью построения графика корреляционного поля, если данные выборок таковы: Правая рука: xi, кГ ~ 14,0; 14,2; 14,9; 15,4; 16,0; 17,2; 18,1. Левая рука: yi, кГ ~ 12,1; 13,8; 14,2; 13,0; 14,6; 15,9; 17,4. 1.3. Коэффициенты корреляции и их свойства. 1) высокая степень взаимосвязи – значения коэффициента корреляции находится в пределах от 0,7 до 0,99; 2) средняя степень взаимосвязи – значения коэффициента корреляции находится в пределах от 0,5 до 0,69; 3) слабая степень взаимосвязи – значения коэффициента корреляции находится от 0,2 до 0,49. 1.4. Нормированный коэффициент корреляции Браве-Пирсона (1.1) Из формулы (1.1) видно, что для вычисления необходимо найти средние значения признаков Х и Y, а также отклонения каждого статистического данного от его среднего . Зная эти значения, находятся суммы . Затем, вычислив значение , необходимо определить достоверность найденного коэффициента корреляции, сравнив его фактическое значение с табличным для k = n –2 (табл. 10 приложения). Если , то можно говорить о том, что между признаками наблюдается достоверная взаимосвязь. Если , то между признаками наблюдается недостоверная корреляционная взаимосвязь. Пример 1.4. Определить достоверность взаимосвязи между показателями веса и количеством подтягиваний на перекладине у 11 исследуемых с помощью расчета нормированного коэффициента корреляции, если данные выборок таковы: xi, кг ~ 51; 50; 48; 51; 46; 47; 49; 60; 51; 52; 56. yi, кол-раз ~ 13; 15; 13; 16; 12; 14; 12; 10; 18; 10; 12. Решение 1. Расчет нормированного коэффициента корреляции Пирсона произвести по формуле (1): (1) |
Тогда