1) группа
неабелева, причем, если , то - -группа, если же , то - простая неабелева группа;2)
, где - -группа, а такая монолитическая группа с минимальной нормальной подгруппой , что , , - -группа, и либо , либо - группа порядка q, где .Лемма. Пусть
- произвольная непустая формация и пусть у каждой группы -корадикал не имеет фраттиниевых -главных факторов. Тогда, если - монолитическая группа из , то .Лемма. В любой модулярной решетке если
и оба элемента и покрывают , то покрывает и , и ; двойственно, если и покрывает оба элемента и , то и оба покрывают .Теорема. Пусть
- формация всех -нильпотентных групп, и пусть - некоторая -насыщенная формация. Тогда в том и только в том случае -нильпотентный дефект формации равен 1, когда , где - -насыщенная -нильпотентная подформация формации , - минимальная -насыщенная не -нильпотентная подформация формации , при этом:1) всякая
-нильпотентная подформация из входит в ;2) всякая
-насыщенная не -нильпотентная подформация из имеет вид .Доказательство. Необходимость. Пусть
-нильпотентный дефект формации равен 1. Так как формация - не -нильпотентна, то по лемме в формацию входит некоторая минимальная -насыщенная не -нильпотентная подформация . По условию - максимальная -насыщенная подформация в . Значит, .Достаточность. Пусть
-насыщенная не -нильпотентная формация, удовлетворяющая требованиям теоремы, т.е. - -насыщенная -нильпотентная подформация формации , - минимальная -насыщенная не -нильпотентная подформация формации . Понятно, что . Пусть -дефекты формаций , и равны соответственно , и . Поскольку - -насыщенная -нильпотентная формация, то ее -дефект равен 0. Так как - минимальная -насыщенная не -нильпотентная формация, то ее -дефект равен 1.Т. е., в силу леммы , получаем, что -дефект формации равен