Формула решений квадратного уравнения.
Греческий математик Герон (I или II век нашего летоисчисления) вывел формулу для решения квадратного равнения ax2 + bx = c умножением всех членов на а и
прибавлением к обеим половинам уравнения
:В индии пришли к более простому способу вывода, который встречается в школьных учебниках: они умножали на 4a и к обеим половинам по b2. Это даёт:
Индийские математики часто давали задачи в стихах.
Задача о лотосе.
Над озером тихим, с полмеры над водой,
Был виден лотоса цвет.
Он рос одиноко, и ветер волной
Нагнул его в сторону – и уж нет
Цветка над водой.
Нашёл его глаз рыбака
В двух мерах от места, где рос.
Сколько озера здесь вода глубока?
Тебе предложу я вопрос.
Ответ:
Из истории решения системы уравнений, содержащей одно уравнение второй степени и одно линейное
В древневавилонских текстах, написанных в III—II тысячелетиях до н. э., содержится немало задач, решаемых с помощью составления систем уравнений, в которые входят и уравнения второй степени. Вот одна из них.
. “Площади двух своих квадратов я сложил:
.Сторона второго квадрата равна стороны первого и еще 5”.Соответствующая система уравнений в современной записи имеет вид:
Для решения системы (1) вавилонский автор возводит во втором уравнении у в квадрат и согласно формуле квадрата суммы, которая ему, видимо, была известна, получает:
Подставляя это значение у в первое из системы уравнений (1), автор приходит к квадратному уравнению:
Решая это уравнение по правилу, применяемому нами в настоящее время, автор находит х, после чего определяет у. Итак, хотя вавилоняне и не имели алгебраической символики, они решали задачи алгебраическим методом.
Диофант, который не имел обозначений для многих неизвестных, прилагал немало усилий для выбора неизвестного таким образом, чтобы свести решение системы к решению одного уравнения. Вот один пример из его “Арифметики”.
Задача 21. “Найти два числа, зная, что их сумма равна 20, а сумма их квадратов — 208”.
Эту задачу мы решили бы путем составления системы уравнений:
Диофант же, выбирая в качестве неизвестного половину разности искомых чисел, получает (в современных обозначениях):
Складывая эти уравнения, а затем вычитая одно из другого (все это Диофант производит устно), получаем
x = 2 + 10; у = 10 —2.
Далее,
х2 + у2 = (г + lO)2 + (10 — г)2 == 2z2 + 200.
Таким образом,
2z2 + 200 = 208,
откуда
z = 2; х = 2 + 10 = 12; у = 10 — 2 = 8.
Диофантовы уравнения.
Задача Диофанта №80 (Из II книги его “Арифметики”)
Найти 2 таких числа, чтобы сумма квадрата каждого из них с другим искомым числом дала полный квадрат,
Решение Диофанта
Пусть первое число (I) будет s. Чтобы квадрат его •при прибавлении второго числа дал квадрат, второе число должно быть 2s + 1, так как в таком случае выполняется требование задачи: квадрат первого числа. сложенный со вторым, дает
s2 + 2s + 1, то есть полный квадрат (s + 1)2.
Квадрат второго числа, сложенный с первым, должен также дать квадрат, то есть число (2s + I)2 + s, равное
4s2 + 5s + 1 == t2
Положим, что t = 2s — 2; тогда t2 = 4s2 — 8s + 4. Это выражение должно равняться 4s2 + 5s + 1. Итак, должно быть:
4s2 — 8s + 4 == 4s2 + 5s + l откуда s=
Значит, задаче удовлетворяют числа:
.Проверка;
Почему Диофант делает предположение, что t==2s—2, он не объясняет. Во всех своих задачах (в дошедших до нас шести книгах его их 189) он делает то или другое предположение, не давая никакого обоснования.
Вообще содержание 6 книг таково:
В “Арифметике” 189 задач, каждая снабжена одним или несколькими решениями. Задачи ставятся в общем виде, затем берутся конкретные значения входящих в нее величин и даются решения.
Задачи книги I в большинстве определенные. В ней имеются и такие, которые решаются с помощью систем двух уравнений с двумя неизвестными, эквивалентных квадратному уравнению. Для его разрешимости Диофант выдвигает условие, чтобы дискриминант был полным квадратом. Так, задача 30— найти таких два числа, чтобы их разность и произведение были заданными числами,— приводится к системе
х — у = а, х = b.
Диофант выдвигает “условие формирования”: требуется, чтобы учетверенное произведение чисел, сложенное с квадратом разности их, было квадратом, т. е. 4b + а2 = с2.
В книге II решаются задачи, связанные с неопределенными уравнениями и системами таких уравнений с 2, 3, 4, 5, 6 неизвестными степени не выше второй.
Диофант применяет различные приемы. Пусть необходимо решить неопределенное уравнение второй степени с двумя неизвестными f2(х, у) ==0. Если у него есть рациональное решение (x0, y0), то Диофант вводит подстановку
x = x0 + t,
y = y0 + kt,
в которой k рационально. После этого основное уравнение преобразуется в квадратное относительно t, у которого свободный член f2( x0, у0) = 0. Из уравнения получается t1 == 0 (это значение Диофант отбрасывает), t2 — рациональное число. Тогда подстановка дает рациональные х и у.
В случае, когда задача приводилась к уравнению у2 = ax2 + bx + с, очевидно рациональное решение x0 = О,y0=±C. Подстановка Диофанта выглядит так:
x = t,
y = kt ± c
Другим методом при решении задач книги II Диофант пользовался, когда они приводили к уравнению у2 == = a2x2 + bx + с. Он делал подстановку
x= t,
y = at + k,
после чего х и у выражались рационально через параметр k:
Диофант, по существу, применял теорему, состоящую в том,; что если неопределенное уравнение имеет хотя бы одно рациональное решение, то таких решений будет бесчисленное множество, причем значения х и у могут быть представлены в виде рациональных функций некоторого параметра”
В книге II есть задачи, решаемые с помощью “двойного неравенства”, т. е. системы
ах + b = и2,
сх + d == v2.
Диофант рассматривает случай а = с, но впоследствии пишет, что метод можно применить и при а : с = т2, Когда а == с, Диофант почленным вычитанием одного равенства из другого получает и2 —и2 = b — d. Затем разность b — d раскладывается на множители b — d = п1 и приравнивает и + v = I, и — v = п, после чего находит
и = (I + п)/2, v = (I - n)/2, х - (l2 + п2}/4a - {b + d)/2a.
Если задача сводится к системе из двух или трех уравнений второй степени, то Диофант находит такие рациональные выражения неизвестных через одно неизвестное и параметры, при которых все уравнения, кроме одного, обращаются в тождества. Из оставшегося уравнения он выражает основное неизвестное через параметры, а затем находит и другие неизвестные.
Методы, разработанные в книге II, Диофант применяет к более трудным задачам книги III, связанным с системами трех, четырех и большего числа уравнений степени не выше второй. Он, кроме того, до формального решения задач проводит исследования и находит условия, которым должны удовлетворять параметры, чтобы решения существовали.
В книге IV встречаются определенные и неопределенные уравнения третьей и более высоких степеней. Здесь дело обстоит значительно сложнее, потому что, вообще говоря, неизвестные невозможно выразить как рациональные функции одного параметра. Но, как и раньше, если известны одна или две рациональные точки кубической кривой fз (х, у) == 0, то можно найти и другие точки. Диофант при решении задач книги IV применяет новые методы”
Книга V содержит наиболее сложные задачи; некоторые из них решаются с помощью уравнений третьей и четвертой степеней от трех и более неизвестных. Есть и такие, в которых требуется разложить данное целое число на сумму двух, трех или четырех квадратов, причем эти квадраты должны удовлетворить определенным неравенствам.,