Смекни!
smekni.com

Методы решения уравнений в странах древнего мира (стр. 2 из 3)

Формула решений квадратного уравнения.

Греческий математик Герон (I или II век нашего летоисчисления) вывел формулу для решения квадратного равнения ax2 + bx = c умножением всех членов на а и

прибавлением к обеим половинам уравнения

:

В индии пришли к более простому способу вывода, который встречается в школьных учебниках: они умножали на 4a и к обеим половинам по b2. Это даёт:

Индийские математики часто давали задачи в стихах.

Задача о лотосе.

Над озером тихим, с полмеры над водой,

Был виден лотоса цвет.

Он рос одиноко, и ветер волной

Нагнул его в сторону – и уж нет

Цветка над водой.

Нашёл его глаз рыбака

В двух мерах от места, где рос.

Сколько озера здесь вода глубока?

Тебе предложу я вопрос.

Ответ:

Из истории решения системы уравнений, содержащей одно уравнение второй степени и одно линейное

В древневавилонских текстах, написанных в III—II тысячеле­тиях до н. э., содержится немало задач, решаемых с помощью составления систем уравнений, в которые входят и уравнения вто­рой степени. Вот одна из них.

. “Площади двух своих квадратов я сложил:

.Сторона второго квадрата равна
стороны первого и еще 5”.

Соответствующая система уравнений в современной записи имеет вид:

Для решения системы (1) вавилонский автор возводит во втором уравнении у в квадрат и согласно формуле квадрата суммы, ко­торая ему, видимо, была известна, получает:

Подставляя это значение у в первое из системы уравнений (1), автор приходит к квадратному уравнению:

Решая это уравнение по правилу, применяемому нами в настоя­щее время, автор находит х, после чего определяет у. Итак, хотя вавилоняне и не имели алгебраической символики, они решали задачи алгебраическим методом.

Диофант, который не имел обозначений для многих неизвест­ных, прилагал немало усилий для выбора неизвестного таким об­разом, чтобы свести решение системы к решению одного уравнения. Вот один пример из его “Арифметики”.

Задача 21. “Найти два числа, зная, что их сумма равна 20, а сумма их квадратов — 208”.

Эту задачу мы решили бы путем составления системы уравнений:

Диофант же, выбирая в качестве неизвестного половину раз­ности искомых чисел, получает (в современных обозначениях):

Складывая эти уравнения, а затем вычитая одно из другого (все это Диофант производит устно), получаем

x = 2 + 10; у = 10 —2.

Далее,

х2 + у2 = (г + lO)2 + (10 — г)2 == 2z2 + 200.

Таким образом,

2z2 + 200 = 208,

откуда

z = 2; х = 2 + 10 = 12; у = 10 — 2 = 8.

Диофантовы уравнения.

Задача Диофанта №80 (Из II книги его “Арифметики”)

Найти 2 таких числа, чтобы сумма квадрата каждого из них с другим искомым числом дала полный квадрат,

Решение Диофанта

Пусть первое число (I) будет s. Чтобы квадрат его •при прибавлении второго числа дал квадрат, второе число должно быть 2s + 1, так как в таком случае вы­полняется требование задачи: квадрат первого числа. сложенный со вторым, дает

s2 + 2s + 1, то есть полный квадрат (s + 1)2.

Квадрат второго числа, сложенный с первым, должен также дать квадрат, то есть число (2s + I)2 + s, равное

4s2 + 5s + 1 == t2

Положим, что t = 2s — 2; тогда t2 = 4s2 — 8s + 4. Это выражение должно равняться 4s2 + 5s + 1. Итак, должно быть:

4s2 — 8s + 4 == 4s2 + 5s + l откуда s=

Значит, задаче удовлетворяют числа:

.

Проверка;

Почему Диофант делает предположение, что t==2s—2, он не объясняет. Во всех своих задачах (в дошедших до нас шести книгах его их 189) он делает то или другое предположение, не давая никакого обоснования.

Вообще содержание 6 книг таково:

В “Арифметике” 189 задач, каждая снабжена одним или несколькими решениями. Задачи ставятся в общем виде, затем берутся конкретные значения входящих в нее ве­личин и даются решения.

Задачи книги I в большинстве определенные. В ней имеются и такие, которые решаются с помощью систем двух уравнений с двумя неизвестными, эквивалентных квадратному уравнению. Для его разрешимости Диофант выдвигает условие, чтобы дискриминант был полным квадратом. Так, задача 30— найти таких два числа, чтобы их разность и произведение были заданными числами,— приводится к системе

ху = а, х = b.

Диофант выдвигает “условие формирования”: требуется, чтобы учетверенное произведение чисел, сложенное с квад­ратом разности их, было квадратом, т. е. 4b + а2 = с2.

В книге II решаются задачи, связанные с неопределен­ными уравнениями и системами таких уравнений с 2, 3, 4, 5, 6 неизвестными степени не выше второй.

Диофант применяет различные приемы. Пусть необхо­димо решить неопределенное уравнение второй степени с двумя неизвестными f2(х, у) ==0. Если у него есть ра­циональное решение (x0, y0), то Диофант вводит подста­новку

x = x0 + t,

y = y0 + kt,

в которой k рационально. После этого основное уравнение преобразуется в квадратное относительно t, у которого свободный член f2( x0, у0) = 0. Из уравнения получается t1 == 0 (это значение Диофант отбрасывает), t2 — рацио­нальное число. Тогда подстановка дает рациональные х и у.

В случае, когда задача приводилась к уравнению у2 = ax2 + bx + с, очевидно рациональное решение x0 = О,y0=±C. Подстановка Диофанта выглядит так:

x = t,

y = kt ± c

Другим методом при решении задач книги II Диофант пользовался, когда они приводили к уравнению у2 == = a2x2 + bx + с. Он делал подстановку

x= t,

y = at + k,

после чего х и у выражались рационально через параметр k:

Диофант, по существу, применял теорему, состоящую в том,; что если неопределенное уравнение имеет хотя бы одно рациональное решение, то таких решений будет бес­численное множество, причем значения х и у могут быть представлены в виде рациональных функций некоторого параметра”

В книге II есть задачи, решаемые с помощью “двойного неравенства”, т. е. системы

ах + b = и2,

сх + d == v2.

Диофант рассматривает случай а = с, но впоследствии пишет, что метод можно применить и при а : с = т2, Когда а == с, Диофант почленным вычитанием одного ра­венства из другого получает и2и2 = b — d. Затем раз­ность b — d раскладывается на множители b — d = п1 и приравнивает и + v = I, и — v = п, после чего нахо­дит

и = (I + п)/2, v = (I - n)/2, х - (l2 + п2}/4a - {b + d)/2a.

Если задача сводится к системе из двух или трех урав­нений второй степени, то Диофант находит такие рацио­нальные выражения неизвестных через одно неизвестное и параметры, при которых все уравнения, кроме одного, обращаются в тождества. Из оставшегося уравнения он выражает основное неизвестное через параметры, а затем находит и другие неизвестные.

Методы, разработанные в книге II, Диофант применяет к более трудным задачам книги III, связанным с системами трех, четырех и большего числа уравнений степени не выше второй. Он, кроме того, до формального решения задач проводит исследования и находит условия, которым должны удовлетворять параметры, чтобы решения сущест­вовали.

В книге IV встречаются определенные и неопределен­ные уравнения третьей и более высоких степеней. Здесь дело обстоит значительно сложнее, потому что, вообще говоря, неизвестные невозможно выразить как рациональ­ные функции одного параметра. Но, как и раньше, если известны одна или две рациональные точки кубической кривой fз (х, у) == 0, то можно найти и другие точки. Диофант при решении задач книги IV применяет новые методы”

Книга V содержит наиболее сложные задачи; некоторые из них решаются с помощью уравнений третьей и четвер­той степеней от трех и более неизвестных. Есть и такие, в которых требуется разложить данное целое число на сум­му двух, трех или четырех квадратов, причем эти квадра­ты должны удовлетворить определенным неравенствам.,