Пример. В кольце
многочленов с действительными коэффициентами найдем наибольший общий делитель многочленов , . Делим f на g:
Для удобства умножим полученный остаток на
. При этом последующие остатки также умножатся на некоторые числа, отличные от нуля, что несущественно при нахождении наибольшего общего делителя, так как он находится с точностью до константы. Выполним второе деление:
Полученный остаток разделим на 9 и выполним третье деление:
0
Поскольку остаток равен нулю, то
.Наибольший общий делитель нескольких многочленов f1, f2, ..., fm может быть найден индуктивным способом на основании следующей формулы:
. (10)Для того чтобы найти наибольший общий делитель многочленов
, следует, согласно этой формуле, найти сначала , затем и т.д.; и будет искомым наибольшим делителем.Докажем формулу (10). Согласно определению наибольшего общего делителя, делители многочлена
- это в точности общие делители многочленов . Поэтому совокупность всех общих делителей многочленов и fm совпадает с совокупностью всех общих делителей многочленов и fm; отсюда и следует формула (10).Наибольший общий делитель d двух многочленов
над полем R, а также всякий многочлен, кратный d, может быть представлен в виде , где . Такое представление мы называем линейным выражением данного многочлена через многочлены f и g.Для нахождения линейного выражения наибольшего общего делителя d можно воспользоваться алгоритмом Евклида. В самом деле, первое из равенств (9) дает следующее линейное выражение многочлена r1 через f и g:
. Подставляя его во второе равенство, получаем линейное выражение многочлена r2: . Продолжая так дальше, получаем, в конце концов, линейное выражение наибольшего общего делителя .Пример. Найдем линейное выражение наибольшего общего делителя d многочленов f и g из примера 14.
Результаты делений с остатком, выполненных при решении предыдущего примера, показывают, что
, . Отсюда находим: , . Таким образом, , .Линейное выражение любого многочлена h, кратного d, может быть найдено, исходя из линейного выражения d. А именно: пусть
и . Тогда .На практике линейное выражение многочлена h удобнее искать не с помощью алгоритма Евклида, а методом неопределенных коэффициентов. Запишем искомые многочлены u и v в общем виде с неопределенными (неизвестными) коэффициентами. Приравнивая коэффициенты при одинаковых степенях x в равенстве
, получим систему уравнений для коэффициентов многочленов u и v. Легко видеть, что эти уравнения будут линейными.7. Наименьшее общее кратное.
Наименьшим общим кратным многочленов
над полем R называется многочлен h, обладающий следующими свойствами: 1) h делится на каждый из многочленов , т.е. является их общим кратным; 2) h делит любое общее кратное многочленов .Теорема Для двух многочленов f и g наименьшее общее кратное [f, g] связано с наибольшим общим делителем (f, g) соотношением
(11)