Смекни!
smekni.com

Принятие решений в условиях риска 3 (стр. 1 из 8)

Федеральное агентство по образованию

Новокузнецкий филиал – институт
государственного образовательного учреждения
высшего профессионального образования
“Кемеровский государственный университет”

Кафедра информационных систем и управления имени В.К. Буторина

КУРСОВАЯ РАБОТА

по дисциплине "Исследование операций в экономике"

Тема:"Принятие решений в условиях риска"

Выполнила: студентка

группы ПИЭ-061

Никуленко С.Е.

Проверил: доц. Шипилов С.А.

Новокузнецк 2010

Содержание

Содержание. 2

ВВЕДЕНИЕ. 3

1 Математическое обеспечение. 4

1.1 Постановка задачи. 4

1.2 Упрощение матрицы игры.. 8

1.3 Критерий Байеса относительно выигрышей. 9

1.4 Критерий Байеса относительно рисков. 11

1.5 Критерий Лапласа относительно выигрышей. 13

1.6 Критерий Лапласа относительно рисков. 15

1.7 Критерий относительных значений вероятностей состояний природы с учетом выигрышей (рисков) 15

2 Алгоритмическое обеспечение. 19

3 Программное обеспечение. 24

4 Исследовательская часть. 27

Заключение. 36

Список литературы.. 37

Приложение. 38

ВВЕДЕНИЕ

В системах управления технологическими процессами существуют проблемы, связанные с решением задач оценки эффективности управления такими системами с учетом характеристик надежности, стойкости, работоспособности объектов управления. Решение таких задач относят к задачам принятия решений в условиях риска.

На сегодняшнее время задача управления технологическими процессами является актуальной, так как развитие измерительной, микропроцессорной техники и компьютерных технологий дают возможность увеличить их надежность и экономичность.

Целью работы является исследование вопросов принятия решения в условиях, когда выбор некоторой стратегии гарантирует получение результата с определенной вероятностью, и разработка программного модуля.

Объектом исследования является процесс принятия решения.

Предмет исследования - процесс выбора оптимального решения в условиях риска.

Задачи

1. Подробное математическое описание заданного метода и задачи исследования операций.

2. Выбор и детальное описание алгоритма решения задачи. Иллюстрация работы алгоритма на контрольном примере с использованием стандартных программных средств (Excel) с численным выводом результатов.

3. Выбор среды программирования, интерфейса пользователя. Описание модульной структуры программного комплекса.

4. Исследование работоспособности программы на нескольких тестовых примерах.

1 Математическое обеспечение

1.1 Постановка задачи

В экономической практике во многих задачах принятия решений важным элементом является неопределенность, заключающаяся в недостаточной информированности лица, принимающего решение, об объективных условиях, в которых будет приниматься решение.

Неопределенность такого рода может порождаться различными причинами: нестабильность экономической ситуации, покупательский спрос на товар определенного вида, меняющийся объем перевозок, рыночная конъюнктура, политика правительства, надежность партнера, выход из строя технического оборудования, курс валюты, уровень инфляции, налоговая политика, биржевая ситуация, экологическая обстановка, стихийные бедствия и др.

Риск - это деятельность, связанная с преодолением неопределенности в ситуации неизбежного выбора, в процессе которой имеется возможность количественно и качественно оценить вероятность достижения предполагаемого результата, неудачи и отклонения от цели.

Выбор стратегии зависит от объективной действительности, называемой в математической модели «природой». Сама же математическая модель подобных ситуаций называется «игрой с природой».

Таким образом, в игре с природой осознанно действует только один игрок, а именно, лицо, принимающее решение (статистик), обозначим его через А. Природа, обозна­чим ее через П, является вторым игроком.

Пусть игрок А имеет т возможных стратегий А1, ..., Ат, а природа П может на­ходиться в одном из п состояний П1, ..., Пп, которые можно рассматривать как ее «стратегии».

Совокупность { П1, ..., Пп } формируется либо на основе имеющегося опыта анализа состояний природы, либо в результате предположений и интуиции экспертов.

Предположим, что статистик может оценить последствия применения ка­ждой своей чистой стратегии Аi в зависимости от каждого состояния Пj природы П.

Выигрыш игрока А при выбранной им стратегии Аi, i = l, ..., m, и при со­стоянии Пj, j = l, ..., п, природы П обозначим aij , i i = l, ..., m, j = l, ..., п. Из выигрышей игрока А можно сформировать матрицу выигры­шей игрока А (матрицу игры, платежную матрицу):

Таблица 1 – Платежная матрица, матрица выигрышей

A=

Пj Аi

П1

П2

Пn

А1

a11

a12

a1n

А2

a21

a22

a2n

Аm

am1

am2

amn

Целью является выбор игроком A чистой или смешанной стратегии, более эффективной, чем остальные.

Смешанная стратегия - такая стратегия, в которой ,в отличие от чистой, игроку следует выбирать ту или иную стратегию с некоторой долей вероятности. В чистой стратегии вероятность ее выбора равна 1, а всех других 0.

При решении вопроса о выборе возможной стратегии в игре с природой игрок A должен исходить из матрицы выигрышей. Однако матрица выигрышей не всегда адекватно отражает имеющуюся ситуацию. На выбор стратегии должны влиять не только выигрыши, составляющие матрицу игры, но и показатели «удачности» или «неудачности» выбора данной стратегии при данном состоянии приро­ды и благоприятности этого состояния для увеличения выигрыша.

Показателем благоприятности состояния Пj природы П для увеличения выигрыша называется наибольший выигрыш при этом состоянии, т.е. наибольший элемент в j-ом столбце матрицы игры:

βj = max aij, j=1, …, n. (1)

1≤ im

Таким образом, благоприятность состояния природы рассматривается как фактор, благоприятствующий увеличению выигрыша игрока А при этом состоянии природы.

Для оценки степени удачности применения игроком А стратегии Аi при состоянии Пj природы П вводят понятие «риска».

Риск упущенной выгоды – это риск наступления косвенного (побочного) финансового ущерба (неполученная прибыль) в результате неосуществления какого-либо мероприятия.

Риском rij игрока А при выборе им стратегии Аi в условиях состояния природы П называется разность между показателем благоприятности βj состояния природы Пj и выигрышем aij, т.е. разность между выигрышем, который игрок А получил бы, если бы знал заранее, что природа примет состояние Пj и выигрышем, который он получит при этом же состоянии Пj, выбрав стратегию Аi:

rij = βj - aij, i=1, …, m; j=1, …, n. (2)

Таким образом, риск rij игрока А при применении стратегии Аi в условиях состояния природы Пj есть упущенная им возможность максимального выигрыша βj при этом состоянии природы. Эта упущенная возможность определяется невыигранной частью величины максимального выигрыша βj.

Величину риска можно интерпретировать как своеобразную плату за отсутствие информации о состоянии природы.

Риск rti для любых i=1, …, m и j=1, …, n неотрицателен:

rij ≥ 0, i=1, …, m; j=1, …, n. (3)

Можно установить и верхнюю границу рисков для каждого состояния природы Пj. Для этого введем в рассмотрение величину ωj:

ωj = min aij, j=1, …, n. (4)

1≤ im

представляющую собой наименьший выигрыш игрока А при состоянии природы Пj. Тогда имеем:

rijβj - ωj, i=1, …, m; j=1, …, n. (5)

Разность βj - ωj естественно назвать колебанием выигрышей при состоянии природы Пj, j = l, ..., п

Если aij = βj, то rij = 0, т.е. стратегия Аi при состоянии природы Пj является безрисковой.