ГЛАВА II. Использование способов решения
алгебраических уравнений на педагогической практике.
§1. Задачи, условие и этапы организации экспериментальной работы
по внедрению алгебраических уравнений
на уроках математики в 8 классах.
При проведении теоретических исследований были получены выводы о многообразии алгебраических уравнений, а также о том, что изучение алгебраических уравнений повышает уровень знаний по математике. Поэтому для подтверждения этих выводов наше эмпирическое исследование направлено на разрешение следующих задач:
1. Провести анализ содержания школьных учебников.
2. Определить методологические условия, способствующие качественному формированию знаний, умений и навыков в решении алгебраических уравнений.
3. Практически реализовать предложенную экспериментальную программу.
4. Провести сравнительный анализ результатов.
При проведении эмпирического исследования были использованы следующие методы: наблюдение, анкетирование, педагогический эксперимент, контрольные работы.
Для осуществления эксперимента были выбраны учащиеся 8 класса, средней полной общеобразовательной школы №4, Мартыновского района, хутора Малоорловский. Всего в исследовании приняло участие 28 учеников: 18 мальчиков и 10 девочек. Учитель математики охарактеризовал данный класс, как класс со средней успеваемостью, обучающейся без уклона на какую-либо дисциплину.
Исследование мы проводили на уроках математики, и оно включало в себя три этапа:
- Констатирующий.
- Формирующий.
- Контрольный.
В ходе констатирующего этапа мы осуществили наблюдение на уроках математике в 8 классе, анализировали содержание учебников алгебры, проводили анкетирование учителей, провели контрольную работу №1.
На этом этапе мы провели анализ учебников алгебры разных авторов. По нашему мнению наиболее доступным для учащихся языком написан учебник алгебры 7 класса, авторами которого являются Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров, Н.Е. Федорова, М.И. Шабунин. До того как ввести главу II, «Уравнения с одним неизвестным», авторы предлагают изучить главу I, «Алгебраические выражения», куда входят следующие параграфы:
§1. Числовые выражения.
§2. Алгебраические выражения.
§3. Алгебраические равенства. Формулы.
§4. Свойства арифметических действий.
§5. Правила раскрытия скобок.
Выше перечисленные параграфы, знакомят учащихся с темами, которые в дальнейшем помогут при изучении темы «Алгебраические уравнения». Изучив параграфы, входящих в главу I, учащиеся без труда освоят главу II:
§1. Уравнение и его корни.
§2. Решение уравнений с одним неизвестным, сводящихся к линейным.
§3. Решение задач с помощью уравнений.
Т.к. мы проводили наблюдение лишь в одном классе, наблюдали за деятельностью одного учителя, то наши заключения могут носить случайный характер. В связи с этим мы провели опрос учителей математики нескольких школ с тем, чтобы выявить, применяют ли они методы решения алгебраических уравнений, если применяют, то в каких случаях. Опрос проводился в форме анкеты (см. приложение 1). Шестнадцати респондентам предлагались 7 вопросов, на каждый из которых давались варианты ответов. Результаты анкетирования были занесены нами в таблицу 1.
Таблица №1. Обобщенные данные по результатам анкетирования.
Номер позиции Номер вопроса | 1 | 2 | 3 | Всего |
1 | 11 65% | 5 35% | 0 0% | 16 100% |
2 | 9 55% | 5 32% | 2 13% | 16 100% |
3 | 10 60% | 1 10% | 5 30% | 16 100% |
4 | 10 60% | 3 20% | 3 20% | 16 100% |
5 | 8 50% | 3 18% | 5 32% | 16 100% |
6 | 2 28,5% | 4 57% | 1 14,5% | 7 100% |
7 | 7 45% | 5 35% | 4 20% | 16 100 |
Из таблицы видно, что из шестнадцати опрошенных учителей 65% ответили, что недостаточно времени отводится программой для обучения учащихся предмету, 35% ответили, что вполне достаточно и ни один человек не ответил, что для обучения учащихся этому предмету отводится количество часов в избытке.
Итак, на вопрос – систематизируете ли вы знания учащихся на уроках математики – 55% учителей ответили – нет, 32% - не знаю, 13% - да. Результаты опроса показали, что большинство учителей считают, что нет системы в изложении данной темы. 60% всех учителей считают важным достижение повышения качества знаний учащихся, 30% - активности школьников в учении, 10% - исключение дублирования. При построении оптимальной системы уроков по теме «Алгебраические уравнения» 60% учителей использую методические журналы, остальные – дидактическую литературу и учебные пособия. 50% учителей считают, что трудности возникают в связи с большими затратами времени на изучение материала, 18% - отсутствие необходимой литературы и 32% - сложность для восприятия учащихся. 57% учителей используют алгебраические уравнения с целью получения прочных, осознанных знаний, остальные – для развития логического мышления и формирования познавательных интересов. На вопрос о необходимости использовать систематичность в обучении для лучшего усвоения и углубления знаний математического материала были получены следующие ответы: 45% считают необходимым использовать систематичность в обучении для лучшего усвоения учебного материала, 35% - нет, и 20% - только на факультативах.
Анализируя полученные ответы на вопросы анкеты, можно сделать вывод о том, что большинство учителей преподают тему «Алгебраические уравнения» не в системе, одни по причине большой затраты времени, другие в связи с отсутствием необходимой литературы.
Для определения эффективности использования разработанной нами системы необходимо сравнить уровень успеваемости учащихся до введения системы и после. Поэтому в ходе констатирующего этапа эмпирического исследования мы провели контрольную работу №1 (см. приложение №2). Задания, подобранные в ней, соответствовали уровню знаний учащихся, были средней сложности.
На основе результатов, полученных в ходе наблюдения, можно сделать вывод о том, что решение алгебраических уравнений с одной неизвестной различными способами способствует активизации самостоятельной деятельности, повышению интереса к предмету, развитию логического мышления, приросту знаний.
На формирующем этапе мы поставили следующие цели:
1. Внедрить на уроках математики в 8 классе материал, содержание которого раскрыто в теоретической части нашей дипломной работы.
2. Провести наблюдение за процессами осмысления, восприятия и запоминания учащимися данного материала.
3. Определить какие вопросы вызвали наибольшие затруднения у учащихся.
В ходе формирующего этапа эмпирического исследования рассматривать алгебраические уравнения с одной неизвестной предлагалось учащимся в качестве дополнительного материала, а так же на факультативах. Способы решения таких уравнений подробно описаны в главе I нашей дипломной работы.
На начальных этапах введения данной темы возникло множество трудностей, связанных прежде всего с тем, что исследование проводилось в 8 классе, где тема «Алгебраические уравнения» изучалась год назад и многие навыки при решении уравнений были забыты. Уравнения довались по следующей схеме: от более простых, к более сложным. Это позволило повысить эффективность воспроизведения памяти данной темы. На уроке алгебры объяснялась тема «Дробно-рациональные уравнения», на котором был изучен алгоритм решения этих уравнений. Приведем фрагмент этого урока.
Этапы урока | Деятельность учителя | Деятельность учащихся |
II. Устный счет IV. Закреп-ление. | Решить уравнения: 1) ; 2) ; 3) ; 4) . Как найти неизвестное уменьшаемое? Как найти неизвестное вычитаемое? Решим уравнение: . Что в этом уравнении является неизвестным? Как найти неизвестное уменьшаемое? Решим такое уравнение: Что в это уравнении является неизвестным? Как найти неизвестное вычитаемое? Решим уравнение: . Что делаем в первую очередь? Каким мы воспользовались свойством? Каким здесь воспользовались законом? Будут ли найденные значения являться корнями уравнения? | 1) . 2) . 3) . 4) . Нужно к разн6ости прибавить вычитаемое. Нужно из уменьшаемого вычесть разность. Уменьшаемое. Вычитаемое. Приводим дроби к общему знаменателю. Умножим обе части уравнения на , получим . Свойством сократимости. Сочетательным законом. Решая это уравнение, находим его корни: , . Да, так как при подстановке этих значений в знаменатель, он не обращается в 0. |
В ходе практической работы было выявлено множество позитивов. Отдельно можно выделить: учащиеся начинают осознавать, что без четкого анализа уравнения не возможен выбор правильного способа решения. Это ведет к развитию мыслительной активности учащихся, повышение которых положительно сказывается на всем процессе обучения. В этом случае они осознают, воспринимают и запоминают материал не только усилиями одной памяти, а прежде всего, усилиями мыслительных способностей.