Государственное образовательное учреждение
среднего профессионального образования
Волгодонский педагогический колледж
Допущена к защите
“____”____________200__г. Защищена с отметкой:______
Зам. директора по управлению Протокол ИГА №__________
образовательным процессом ________________________
________________________
Выпускная квалификационная работа
Тема: «Алгебраические уравнения с одной неизвестной и способы их решения в основной школе»
Специальность: 050201_Математика
Выполнил(а):
студент(ка)
Руководитель:
Волгодонск 2007 г.
СОДЕРЖАНИЕ
Введение……………………………………………………………………......3
ГЛАВА I. Теоретические особенности алгебраических уравнений.
§1. Уравнения с одним неизвестным. Корень уравнения…………...6
§2. Линейные уравнения………………………………………………....10
§3. Квадратные уравнения. Теорема Виета (прямая и обратная)…….......13
§4. Разложение квадратного трехчлена на множители……………….......21
§5. Уравнения, приводимые к линейным и квадратным………………23
§6. Уравнения третей степени…………………………………………...26
§7. Уравнения четвертой степени……………………………………….29
§8. Уравнения, содержащие неизвестное под знаком абсолютной
величины………………………………………………………………32
ГЛАВА II. Использование способов решения алгебраических уравнений на педагогической практике.
§1. Задачи, условия и этапы организации экспериментальной работы по
внедрению алгебраических уравнений на уроках математики в 8 классах…………………………………………………………….34
§2. Эффективность использования разработанной системы………......41
Заключение…………………………………………………………………........43
Список литературы………………………………………………………….......44
Приложения……………………………………………………………………...46
Введение
Велика роль математики в современном мире. Она занимает почетное место в сложном и бурном процессе развития человеческого общества и сама становится производительной силой. Практика наших дней оказывается богатейшим источником новых типов математических задач. Все эти задачи не только выдвинули физические, инженерные и технологические проблемы, но и привели к созданию новых разделов математики, таких как программирование для ЭВМ, ветвящиеся случайные процессы, теория оптимального уравнения и многие другие.
Сегодня понятие «алгебраические уравнения» стало необходимым элементом общей математической культуры. При этом учащиеся должны не только знать основные определения данного материала, но и осознавать необходимость глубокого изучения алгебраических уравнений, их решений. Изучение уравнений способствует расширению кругозора учащихся, улучшению качества их знаний и помогает при поступлении в ВУЗы. Поэтому актуальностью исследования является изучение и решение алгебраических уравнений.
Рассмотрение этого вопроса в научно-методической литературе не решает проблемы по изучению данного материала в школьном курсе математики. Во-первых, не выделяется достаточно времени на более глубокое изучение исследуемых понятий; во-вторых, программой не предусмотрен достаточно подробный разбор уравнений, их решений в основной общеобразовательной школе, которые содействуют развитию математического мышления, формированию научного мировоззрения.
На современном этапе развития общества к математике предъявляются серьезные требования с технологизацией и информатизацией.
Поэтому проблему нашего исследования мы видим в необходимости систематизации и углубления знаний учащихся по данному материалу и отсутствии системности при изучении этого материала в курсе основной школы, что не позволяет сделать процесс обучения оптимальным.
Объект исследования: процесс обучения математики в основной общеобразовательной школе.
Предмет исследования: алгебраические уравнения и способы их решения как составляющая курса обучения математики.
Цель исследования: изучить в теории и практике способы решения алгебраических уравнений с одним неизвестным, выявить методические условия, способствующие повышению знаний, умений и навыков учащихся по решению различных видов алгебраических уравнений и апробировать их на практике.
Исходя из поставленных целей исследования, вытекают следующие задачи:
1. Выявить различные виды и способы решения алгебраических уравнений с одним неизвестным.
2. Определить методологические условия, способствующие качественному формированию знаний, умений и навыков в решении алгебраических уравнений.
3. Апробировать на практике в основной школе различные способы решения алгебраических уравнений.
Гипотеза: системное изложение учебного материала по алгебраическим уравнениям в курсе основной общеобразовательной школы будет способствовать углублению и оптимизации знаний по математике и созданию прочной базы для усвоения курса высшей математики.
Методологической основой нашего исследования явилась гуманистическая личностно-ориентированная концепция обучения, которая позволяет поставить потребности учащихся в центре всей педагогической системы.
Теоретическая значимость: на основе теоретического обобщения научно-методических источников выявлен наиболее оптимальный способ решения алгебраических уравнений с одним неизвестным.
Методы исследования: анализ научно-методической литературы по проблеме исследования, методы эмпирического исследования: наблюдение, анкетирование, контрольные задания, экспериментальные методы статистической обработки результатов.
База исследования: теоретические разработки исследования апробировались в 8 классе средней общеобразовательной школы №4 Мартыновского района, хутора Малоорловский.
ГЛАВА I. Теоретические особенности алгебраических уравнений.
§1. Уравнения с одним неизвестным. Корень уравнения.
Буквенные величины, входящие в равенство двух выражений
и : , по условию задачи могут быть неравноправными. Одни из них считаются известными, или параметрами. Они могут принимать все свои допустимые значения. Другие буквенные величины являются неизвестными.Равенство, содержащее неизвестные числа, обозначенные буквами, называется уравнением.
В зависимости от числа неизвестных, входящих в уравнение, рассматривают уравнения с одним, с двумя и т.д. неизвестными.
Неизвестные величины в уравнениях обычно обозначают буквами
а известные (или параметры) – буквамиБудем сначала рассматривать уравнение с одним неизвестным
Выражения, стоящие слева и справа от знака равенства, называются левой и правой частями уравнения. Каждое слагаемое части уравнения называется членом уравнения.
Областью допустимых значений (сокращенно ОДЗ) или областью определения уравнения
называется множество всех числовых значений неизвестного , при каждом из которых имеют смысл выражения и одновременно.Определение. Корнем (или решением) уравнения называется то значение неизвестного, при котором это уравнение обращается в верное равенство. [20, c.34]
Очевидно, что корень уравнения принадлежит ОДЗ этого уравнения.
Решить уравнение - это значит найти все его корни или установить, что их нет.
Например, уравнение
имеет единственный корень ; уравнение не имеет корней во множестве R: для любого действительного числа всегда .Определение. Два уравнения называются равносильными (эквивалентными), если всякий корень одного уравнения является корнем другого, и наоборот. Если оба уравнения не имеют корней (решений), то они также считаются равносильными. [20, c.34]
Иначе говоря, равносильными называются уравнения, множества корней которых совпадают.
Если уравнения
и равносильны, то пишут .Например,
; , так как эти уравнения не имеют действительных корней. Ясно, что уравнения и неравносильны.