подстановкой
Корни
где
Пусть "неполное" кубичное уравнение (14) действительно.
а) Если
где
(b) Если
где
(с) Если
где
Во всех случаях берется действительное значение кубичного корня.
Биквадратное уравнение
Алгебраическое уравнение четвертой степени.
где a, b, c – некоторые действительные числа, называется биквадратным уравнением. Заменой
Если
Если
Если
Уравнения четвертой степени
Метод решения уравнений четвертой степени нашел в XVI в. Лудовико Феррари, ученик Джероламо Кардано. Он так и называется – метод Феррари.
Как и при решении кубического и квадратного уравнений, в уравнении четвертой степени
можно избавиться от члена
Идея Феррари состояла в том, чтобы представить уравнение в виде
Правая часть этого уравнения – квадратный трехчлен от
Это уравнение называется резольвентным (т.е. "разрешающим"). Относительно
а само уравнение сводится к двум квадратным:
Их корни и дают все решения исходного уравнения.
Решим для примера уравнение
Здесь удобнее будет воспользоваться не готовыми формулами, а самой идеей решения. Перепишем уравнение в виде
и добавим к обеим частям выражение
Теперь приравняем к нулю дискриминант правой части уравнения:
или, после упрощения,
Один из корней полученного уравнения можно угадать, перебрав делители свободного члена: