Содержание.
1. Введение. Постановка задачи……..…………………………2стр.
2. Вывод формулы……………………………………………….3стр.
3. Дополнительный член в формуле прямоугольников……….5стр.
4. Примеры………………………………………………………..7стр.
5. Заключение……………………………………………………..9стр.
6. Список литературы…………………………………………...10стр.
Постановка задачи.
Задача вычисления интегралов возникает во многих областях прикладной математики. В большинстве случаев встречаются определённые интегралы от функций, первообразные которых не выражаются через элементарные функции. Кроме того, в приложениях приходится иметь дело с определёнными интегралами, сами подынтегральные функции не являются элементарными. Распространенными являются также случаи, когда подынтегральная функция задается графиком или таблицей экспериментально полученных значений. В таких ситуациях используют различные методы численного интегрирования, которые основаны на том, что интеграл представляется в виде предела интегральной суммы (суммы площадей), и позволяют определить эту сумму с приемлемой точностью. Пусть требуется вычислить интеграл при условии, что a и b конечны и f(x) является непрерывной функцией на всем интервале (a, b). Значение интеграла I представляет собой площадь, ограниченную кривой f(x),осью x и прямыми x=a, x=b. Вычисление I проводится путем разбиения интервала от a до b на множество меньших интервалов, приближенным нахождением площади каждой полоски, получающейся при таком разбиении, и дальнейшем суммировании площадей этих полосок.
Вывод формулы прямоугольников.
Прежде, чем перейти к формуле прямоугольников, сделаем следующее замечание:
З а м е ч а н и е. Пусть функция f(x) непрерывна на сегменте [a, b], а
- некоторые точки сегмента [a, b]. Тогда на этом сегменте найдётся точка такая, что среднее арифметическое .В самом деле, обозначим через m и M точные грани функции f(x) на сегменте [a, b]. Тогда для любого номера k справедливы неравенства
. Просуммировав эти неравенства по всем номерам и поделив результат на n, получимТак как непрерывная функция принимает любое промежуточное значение, заключённое между m и M, то на сегменте [a, b] найдётся точка
такая, что .Первые формулы для приближенного вычисления определённых интегралов проще всего получаются из геометрических соображений. Истолковывая определенный интеграл
как площадь некоторой фигуры, ограниченной кривой , мы и ставим перед собой задачу об определении этой площади.Прежде всего, вторично используя эту мысль, которая привела к самому понятию об определенном интеграле, можно разбить всю фигуру (рис. 1) на полоски, скажем, одной и той же ширины
, а затем каждую полоску приближенно заменить прямоугольником, за высоту которого принята какая-либо из ее ординат. Это приводит нас к формуле (1)где
, а R – дополнительный член. Здесь искомая площадь криволинейной фигуры заменяется площадью некоторой состоящей из прямоугольников ступенчатой фигуры (или – если угодно – определенный интеграл заменяется интегральной суммой). Эта формула и называется формулой прямоугольников.(рис.1)
На практике обычно берут
; если соответствующую среднюю ординату обозначить через , то формула перепишется в виде .Дополнительный член в формуле прямоугольников.
Перейдём к отысканию дополнительного члена в формуле прямоугольников.
Справедливо следующее утверждение:
У т в е р ж д е н и е. Если функция f(x) имеет на сегменте [a, b] непрерывную вторую производную, то на этом сегменте найдётся такая точка
, что дополнительный член R в формуле (1) равен (2)Доказательство.
Оценим
, считая, что функция f(x) имеет на сегменте [-h, h] непрерывную вторую производную Для этого подвергнем двукратному интегрированию по частям каждый из следующих двух интегралов:Для первого из этих интегралов получим
Для второго из интегралов аналогично получим
Полусумма полученных для
и выражений приводит к следующей формуле: (3)Оценим величину
, применяя к интегралам и формулу среднего значения и учитывая неотрицательность функций и . Мы получим, что найдутся точка на сегменте [-h, 0] и точка на сегменте[0 ,h] такие, что
В силу доказанного замечания на сегменте [-h, h] найдётся точка такая, чтоПоэтому для полусуммы
мы получим следующее выражение:Подставляя это выражение в равенство (3), получим, что
(4)где
. (5)Так как величина
представляет собой площадь некоторого прямоугольника с основанием (рис.1), то формулы (4) и (5) доказывают, что ошибка, совершаемая при замене указанной площадью, имеет порядокТаким образом, формула
тем точнее, чем меньше h. Поэтому для вычисления интеграла естественно представить это интеграл в виде суммы достаточно большого числа n интегралов