Смекни!
smekni.com

Комплексные числа избранные задачи (стр. 10 из 20)

Ответ:

и
.

Замечание. Конечно, II способ более трудоемкий, но вместе с тем и более универсальный. В частности, если бы на отрезке AB не нашлось ни одной точки, удовлетворяющей заданному в условии равенству, то решение I способом было бы вообще невозможно.

Задача 48. Изобразите множество точек

комплексной плоскости, удовлетворяющих условию:
.

Решение

Представим

в виде
и преобразуем заданную дробь:

.

Мнимая часть дроби равна

.

Неравенство

равносильно системе

Неравенство

перепишем в виде
. Это соотношение задает круг с центром в точке (1; 1) и радиусом 1. Точка (1;0) принадлежит кругу, однако ее координаты не удовлетворяют второму условию системы. Полученное множество изображено на рис. 25.

Рис. 25.

Задача 49. Среди комплексных чисел

, удовлетворяющих условию:
, найдите число с наименьшим модулем.

Решение

Воспользуемся геометрическим смыслом модуля комплексного числа. Как известно, для комплексных чисел

и w величина
равна расстоянию между точками комплексной плоскости, соответствующими числами
и w. Точки, соответствующие числам
, для которых выполняется равенство
, равноудалены от точек (0; 0) и (0; 2) комплексной плоскости, а, следовательно, образуют прямую
. Среди точек прямой наименее удаленной от начала координат является точка (0; 1). Она соответствует числу
– числу с наименьшим модулем, удовлетворяющему заданному уравнению.

Ответ:

.

Задача 50. Пусть M – множество точек

комплексной плоскости таких, что
; K – множество точек
комплексной плоскости вида
, где
. Найдите расстояние между фигурами M и K.

Решение

I способ.

Пусть

; тогда
, откуда

. Множество точек M комплексной плоскости, удовлетворяющих данному условию, есть окружность с центром в точке O1 (0;
) и радиусом 0,5.

По условию,

, т.е.
. Полагая
, имеем
и
.

Множество K точек комплексной плоскости, удовлетворяющих этому условию, есть окружность с центром в точке O2 (–

; 0) и радиусом 0,5. Так как окружности M и K не имеют общих точек, то расстоянием между ними (рис. 26) является длина отрезка PN линии центров, т.е.
.

Рис. 26.

Ответ: 1.

Замечание. Геометрическое обоснование того, что длина отрезка PN есть расстояние между данными фигурами, весьма просто. Действительно, возьмем на окружностях K и M такие точки N1 и P1 соответственно (рис. 27), что

,
. Для ломанной O1P1N1O2 и прямой O1O2 выполняется неравенство O1P1+ P1N1+ N1O2 > O1P+ PN+ NO2. Вычитая из обеих частей неравенства сумму радиусов, получаем P1N1 > PN.

Рис. 27.

II способ.

Запишем неравенства

. Таким образом,
. Это значит, что расстояние от точек фигуры M до точки O1 (0;
) постоянно и равно 0,5. фигура M – окружность с центром в точке O1 и радиусом 0,5. Условие
означает, что множество K получено поворотом точек множества M на угол
вокруг начала координат, т.е. представляет собой окружность с центром в точке O2 (–
; 0) и радиусом 0,5. Дальнейшие рассуждения такие же, как при решении I способом.

Задача 51. Найдите наибольший модуль комплексного числа

, удовлетворяющего условию
.

Решение

Так как

, а
. Это круг с центром в точке A (3; 4) и радиусом
.

Поскольку OA= 5,

, имеем
. Среди точек круга существует точка
, для которой
. Это точка пересечения границы круга и продолжения отрезка OA.

Ответ: 6.

Задача 52. Решите систему уравнений

Решение

Так как

, то
. Это множество – серединный перпендикуляр к отрезку AB, где A (0; 2), B (0; 4) – точки, соответствующие числам
и
. Уравнение этого перпендикуляра есть
. Из второго уравнения системы имеем
. Пусть
, тогда
. Так как
для каждой из искомых точек, то
;
. корнями этого уравнения являются числа 2 и – 4. системе уравнений удовлетворяют 2 числа:
и
.