Система решений не имеет.
3.Если
, то получим системуНеравенству системы удовлетворяют все пары значений x и y (
), кроме – не является решением уравнения системы.4.Аналогично убеждаемся, что условию задачи удовлетворяет и
.5.Остается рассмотреть следующее множество значений a:
.В этом случае
и неравенство (2) задает множество точек комплексной плоскости, расположенных вне окружности, заданной уравнением . (3) (Рис. 37).Обозначим радиус этой окружности через r (
). И достаточно найти такие значения a из рассматриваемого множества, при которых окружность, заданная уравнением (1), расположена вне окружности с уравнением (3).Рассмотрим прямоугольный треугольник
: ; ; ; .Рис. 37.
Получим неравенство
. , , т.о. .Учтем множество значений a, на котором мы решаем систему (рис. 38):
Рис. 38.
Таким образом,
.Ответ:
.Задача 82. Найдите все действительные a такие, что система уравнений
не имеет решений.Решение
1. Если
, то решений нет.2. При
, .3. Если
:Каждое из данных уравнений задает на комплексной плоскости окружность. Пусть О1 и О2 – центры этих окружностей, r1 и r2 – соответствующие радиусы.
Если расстояние между их центрами
удовлетворяют условиям , то окружности имеют хотя бы одну общую точку. тогда получим систему неравенствПоэтому при
система решений не имеет.Ответ:
.3. Заключение
В представленной выпускной квалификационной работе получены следующие результаты.
1) Приведено систематическое изложение вопроса решения задач с комплексными числами.
2) Приведены решения задач с комплексными числами в алгебраической форме, вычисление операций сложения, вычитания, умножения, деления, операции сопряжения для комплексных чисел в алгебраической форме, степень мнимой единицы, модуль комплексного числа, а также изложено правило извлечения квадратного корня из комплексного числа.
3) Решены задачи, посвященные геометрической интерпретации комплексных чисел в виде точек или векторов комплексной плоскости;
4) Рассмотрены действия над комплексными числами в тригонометрической форме.
5) Приведены решения некоторых уравнений 3-й и 4-й степеней;
6) Решены некоторые задачи содержащие комплексные числа и параметры.
Материал, изложенный в выпускной квалификационной работе может быть использован в учебном процессе в курсе алгебры в высшем учебном заведении, а также в классах с углубленным изучением математики или на элективных курсах в школе.
4. Список литературы
1. Абрамов А.М., Виленкин Н.Я., Дорофеев Г.В., Егоров А.А., Земляков А.Н., Моркович А.Г. Избранные вопросы математики. 10 класс. Факультативный курс. – М.: Просвещение, 1980.
2. Алгебра: Учеб. для 8 кл. общеобразоват. учреждений/ Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров и др. – 7-е изд. – М.: Просвещение, 2000.
3. Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В., Шабунин М.Ш. Алгебра и начала анализа. Пробный учебник 9-10 классов средней школы. – М.: Просвещение, 1975.
4. Андронов И.К. Математика действительных и комплексных чисел. – М.: Просвещение, 1975.
5. Беляева Э.С., Потапов А.С. Уравнения и неравенства первой степени с параметром и к ним сводимые. Учебное пособие. – Воронеж: ВГПУ, 2001.
6. Болтянский В.Г., Сидоров Ю.В., Шабунин М.И. Лекции и задачи по элементарной математике. - М.: Наука, 1971.
7. Вавилов В.В, Мельников И.И., Олехник С.Н., Пасиченко П.И. Задачник по математике. Алгебра. Справочное пособие. – М.: Наука, 1987.
8. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и математический анализ для 11 класса: Учебное пособие для учащихся школ и классов с углубленным изучением математики.– 6-е изд. – М.: Просвещение, 1998.
9. Галицкий М.А., Мошкович М.М., Шварцбурд С.И. Углубленное изучение курса алгебры и математического анализа. – М.: Просвещение, 1989.
10. Гордиенко Н.А., Беляева Э.С., Фирстов В.Е., Серебрякова И.В. Комплексные числа и их приложения: Учебное пособие. – Воронеж: ВГПУ, 2004.
11. Дадаян А.А., Новик И.А. Алгебра и начала анализа. – М.: Просвещение, 1987.
12. Звавич Л.И. и др. Алгебра и начала анализа. Решение задач письменного экзамена. / Л.И. Звавич, Л.Я. Шляпочник, И.И. Кулагина. – М.: Дрофа, 2000.
13. Карп А.П. Сборник задач по алгебре и началам анализа. Учебное пособие для учащихся школ и классов с углубленным изучением математики.– М.: Просвещение, 1995.
14. Математика в школе. № 3, 1990.
15. Математика в школе. № 6, 1992.
16. Окунев Л.Я. Высшая алгебра. – М.: Просвещение, 1966.
17. Петраков И.С. Математические кружки в 8 – 10 классах. – М.: Просвещение, 1988.
18. Фадеев Д.К., Никулин М.С., Соколовский И.Ф. Элементы высшей математики для школьников. – М.: Наука, Главная редакция физико-математической литературы, 1987.
19. Цыпкин А.Г., Пинский А.И. Справочник по методам решения задач по математике для средней школы. – М.: Наука, 1989.
20. Шарыгин И.Ф. Факультативный курс по математике: Решение задач: учебное пособие для 10 классов средней школы. – М.: Просвещение, 1989.
21. Шклярский Д.О., Ченцов Н.Н., Яглом И.М. Избранные задачи и теоремы элементарной математики. Арифметика и алгебра. – М.: Физматлит, Лаборатория Базовых Знаний, 2001.
22. Энциклопедический словарь юного математика. (Составитель Савин А.П.). – М.: Педагогика, 1989.
23. Яглом И.М. Комплексные числа и их приложения в геометрии. Изд. 2-е, стереотипное. – М.: Едиториал УРСС, 2004.