Замечание 1.6.2
В силу неоднозначности выбора функции
и чисел и , можно заключить, что -доверительный интервал неединственен.1.7 Сравнение средних
Теперь рассмотрим случай, когда обе совокупности подчиняются нормальному распределению, но проверка гипотез о равенстве двух генеральных дисперсий закончилась отвержением гипотезы равенства. Такую задачу сравнения двух генеральных средних при неравных генеральных дисперсиях принято называть проблемой Беренса-Фишера (по имени учёного У. Беренса опубликовавшего первую работу на эту тему в 1929 г.). В этом случае вместо одной общей генеральной дисперсии мы имеем дело с двумя неравными генеральными дисперсиями: σ12 ≠ σ22. Соответственно имеем и две выборочные дисперсии s12 и s22. Тогда искомая t-статистика будет вычисляться по следующему выражению [1.7.1]:
(1.7.1)Введём обозначения: θ= σ12 / σ22 , u = s12 / s22 и N= n1/ n2 . В этом случае выражение (1.7.1) можно переписать в следующем виде [(1.7.1)]:
(1.7.2).
Основная сложность этого случая заключается в том, что подкоренное выражение в знаменателе не имеет Хи-квадрат распределение, и потому статистика t не имеет распределения Стьюдента. В 40-60-е годы 20 века Бокс, Уэлч, Саттерзвайт, Кохрэн, Боно, Шеффе и многие другие статистики провели детальный анализ этой проблемы. Так в 1938 г. Уэлч исследовал приближённое распределение статистики (1.7.1) и показал, что при равных объёмах выборок n1 = n2 незнание величины θ= σ12 / σ22 не очень сильно влияет на итоговый результат. Однако для случая неравных объёмов выборок ошибки становятся весьма значительными. Другие подходы позволяли аппроксимировать статистику (1.7.2) распределение Стьюдента с дробными степенями свободы.
1.8 Метод минимума X2.
Метод минимума X2 применим лишь и случае группированного непрерывною распределения или дискретного распределения. Оценки, получаемые этим методом, при больших п асимптотически эквивалентны оценкам, полученным с помощью более простого видоизмененного метода минимума X2, выражаемого уравнениями
(1.8.1)или
(1.8.2)в рассматриваемых случаях последний метод совладает с методом максимума правдоподобия.
Основная теорема о предельном распределении X2 для случая, когда некоторые параметры оцениваются по выборке что оценки находятся с помощью видоизмененного метода минимума X2. Однако там же было указано, что имеется целый класс методов нахождения оценок, приводящих к тому же самому предельному распределению для X2. Теперь мы докажем это утверждение.
Асимптотические выражения для оценок, получаемых с помощью видоизмененного метода минимума X2 были приведены в явной форме
(1.8.3)для общего случая у неизвестных параметров а1,...,аг. Предположим, что выполнены условия 1)—3) предыдущего параграфа или аналогичные условия для дискретного распределения. Тогда из предыдущего параграфа следует, что оценки (1.8.3)асимптотически нормальны (это уже было показано в параграфе 30.3) и асимптотически эффективны.
Во всех множествах асимптотически нормальных и асимптотически эффективных оценок для параметров имеются члены порядка n-1/2 такие же, как и в (1.8.3). Однако из вывода предельного распределения для у2 следует, что это предельное распределение полностью определяется членами порядка n-1/2в (1.8.3). Действительно, по формулам
иполучаем
и показывает,что предельное распределение для .у = ( , .... ) определяется именно указанными членами.Таким образом, теорема о предельном распределении величины X2 справедлива для любого множества асимптотически нормальных и асимптотически-эффективных оценок параметров.
1.9 Распределение Пуассона. Аксиомы простейшего потока событий
Говорят, что случайная величина Х имеет распределение Пуассона, если её возможные значения 0, 1, 2, ... , т, ... (бесконечное, но чёткое множество значений), а соответствующие вероятности выражаются формулой:
x | 0 | 1 | … | k | … |
P | e-l | le-l | … | … |
Числоl называется параметром распределения.
Простейший поток событий – такая последовательность событий, происходящих в случайный момент времени.
Поток событий называется пуассоновским, если он удовлетворяет аксиомам простейшего потока событий:
При таких допущениях с большой степенью точности выполняются следующие условия:
1. Отсутствие последействия: вероятность того, что на произвольном временном промежутке (с точки зрения длины и расположения на временной оси) не зависит от того, что происходило в момент времени, предшествующему этому моменту.
2. Однородность потока: Вероятность того, что на некотором временном промежутке произойдет 0,1,2,…,nсобытий зависит только от его длины и не зависит от положення этого отрезка на временной оси.
3. Пусть Dt - длина временного промежутка, тогда:
(Dt)=lDt+o(Dt), Dt®0.4.
(Dt)=1-lDt+o(Dt), Dt®0.Математическое ожидание распределения Пуассона равно:
M
=Вариант 23
Задача 1
На отрезок единичной длины
наугад ставится точка. Вычислить вероятность того, что расстояние от точки до концов отрезка превышает величину .Решить задачу при
, .Решение:
Пусть дан отрезок
длины (Рис. 2.1). Расстояние от точки до концов отрезка превышает величину в том случае, если , где , .Рис. 2.1
Пусть А – событие, когда
. Тогда искомая вероятность .Для заданных значений
и .Задача 2
В круг радиуса R наудачу ставится точка. Найти вероятность того, что она попадет в одну из двух непересекающихся фигур, которые имеют площади
и .Решить задачу при
, , .Решение:
Поскольку фигуры не пересекаются, то площадь, в которую должна попасть точка, равна
. Общая площадь, в которую может попасть точка, равна . Таким образом искомая вероятность . Для заданных значений , и .