Смекни!
smekni.com

Характеристика процесса исследования (стр. 2 из 5)

Рассчитаем среднюю арифметическую:

Таким образом, 2572 тыс. чел. – наиболее характерное значение численности населения, занятого в экономике.

Следующим показателем центра распределения является мода. В интервальных рядах по наибольшей частоте определяется модальный интервал, а затем рассчитывается мода по формуле:

где X0 - нижняя граница модального интервала; fMo – частота модального интервала; fMo-1 – частота предмодального интервала; fMo+1 – частота послемодального интервала; i – величина модального интервала.

Модальным интервалом является первая группа в группировочной таблице. Рассчитаем моду:

Таким образом, значение 505 тыс. чел. – наиболее часто встречаемое среди занятых в экономике.

Далее находим медиану. В интервальных рядах медиана равна варианте, накопленная частота которой больше либо равна половине объема совокупности (f/ Me

). Накопленная частота (f /) в каждой группе рассчитывается сложением частоты в своей группе с частотами всех предыдущих групп. Медиана находится по формуле:


где X0 – нижняя граница медианного интервала; fMe-1/накопленная частота предмедианного интервала; fMe – частота медианного интервала; i – величина медианного интервала.

Половина объема совокупности равна 14 (

). Медианным интервалом является вторая группа, т. к. ее накопленная частота равна 14. Теперь рассчитаем медиану:

Половина из обследованных признаков меньше 2223 тыс. чел., а другая половина больше.

Теперь рассчитаем показатели центра распределения. К ним относятся: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия, коэффициент вариации.

Размах вариации рассчитывается по формуле:

где

– наибольшее и наименьшее значения признака в совокупности.

Рассчитаем размах вариации:

Среднее линейное отклонение рассчитывается как средняя арифметическая из модулей отклонений вариант от средней. Т.к. данные сгруппированы, то рассчитывается среднее линейное отклонение взвешенное:


где xj – варианты;fj– частоты;

– среднее арифметическое.

Рассчитаем среднее линейное отклонение взвешенное:

Среднее квадратическое отклонение рассчитывается как корень из средней арифметической квадратов отклонений от средней. По сгруппированным данным рассчитывается среднее квадратическое отклонение взвешенное:

где m – количество групп; x/j – середина j-го интервала;

- средняя арифметическая; fj– частота j-го интервала.

Рассчитаем седнее квадратическое отклонение взвешенное:

На 1667 и на 1925 тыс. чел. в среднем отличаются отдельные значения совокупности от средней численности занятых в экономике.

Взвешенная дисперсия рассчитывается по формуле:

где

– середина интервала;
– среднее арифметическое;fj– частоты.

Рассчитаем взвешенную дисперсию:

Найдем типичность средней величины через коэффициент вариации:

где

- средняя арифметическая;
- среднее квадратическое отклонение.

Рассчитаем данный показатель:

Так как коэффициент > 40%, следовательно, средняя нетипична, а исследуемая совокупность неоднородна.

4. Анализ связи между признаками по аналитической группировке

Денежные доходы и потребительские расходы в расчете на душу населения(рублей)

Февраль 2009 г.1)
Денежные доходы Потребительские расходы
Российская Федерация 14895,6 10290,3
Центральный федеральный округ 20480,7 13519,9
Белгородская область 11930,2 7776,6
Брянская область 10430,6 7665,4
Владимирская область 9643,7 6154,2
Воронежская область 10188,7 7243,6
Ивановская область 8573,7 6059,9
Калужская область 12061,2 8413,0
Костромская область 10044,1 5775,5
Курская область 11145,3 7992,8
Липецкая область 11829,3 8547,9
Московская область 18288,0 12725,4
Орловская область 9177,9 6387,1
Рязанская область 9407,0 7030,9
Смоленская область 12416,5 7872,3
Тамбовская область 10240,3 7579,6
Тверская область 10772,9 8179,3
Тульская область 12497,5 8157,2
Ярославская область 11723,8 7716,2
г. Москва 40215,5 25492,4
Приволжский федеральный округ 12130,1 8610,7
Республика Башкортостан 12213,3 9015,1
Республика Марий Эл 7777,3 5931,2
Республика Мордовия 7942,8 4948,6
Республика Татарстан 14693,7 11033,6
Удмуртская Республика 9668,8 6451,2
Чувашская Республика 8169,8 5769,5
Пермский край 15717,9 10835,8
Кировская область 9487,0 6008,8
Нижегородская область 12436,3 8925,0
Оренбургская область 10637,7 6664,8
Пензенская область 9741,3 6816,3
Самарская область 17697,0 12743,2
Саратовская область 8996,3 6150,0
Ульяновская область 8439,6 6672,2
Дальневосточный федеральный округ 15262,8 9585,2
Республика Саха (Якутия) 17683,6 10509,0
Камчатский край 20510,9 9693,1
Приморский край 12149,9 8507,0
Хабаровский край 14877,6 9919,9
Амурская область 13400,5 6999,1
Магаданская область 20072,3 10176,7
Сахалинская область 22901,2 16124,3
Еврейская авт. область 11426,1 7158,4
Чукотский авт. округ 20066,4 9272,8

По имеющимся данным определим признак-фактор и признак-результат. Признак-фактор – денежные доходы, признак-результат – потребительские расходы. Построим группировку по признаку-фактору. Для этого определим количество групп и величину интервалов по вышеприведенным формулам.

Количество групп возьмем равной 5

На основании полученных данных построим группировочную таблицу:

Денежные доходы населения Количество в группе
7777,3 – 14264,94 30
14264,94 – 20752,58 9
20752,58 – 27240,22 1
27240,22 – 33727,86 0
33727,86 – 40215,5 1
Итого 41

В каждой группе рассчитаем среднее значение результативного признака как простую среднюю арифметическую из значений результативного признака у всех единиц совокупности, входящих в данную группу. Она рассчитывается по формуле:

где yj – значение результативного признака в группе; n – количество единиц в группе.

не будет, т. к. данное значение признака-фактора отсутствует.

Аналитическая группировочная таблица