Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
Кафедра 21
«Преобразование Лапласа»
Выполнила
студентка гр.0850
Киселева Ю.В.
Проверил:
доцент
Данейкин Ю.В.
Томск, 2008г.
Введение
Преобразование Лапласа — интегральное преобразование, связывающее функцию
комплексного переменного (изображение) с функцией действительного переменного (оригинала). С его помощью исследуются свойства динамических систем и решаются дифференциальные и интегральные уравнения.Одной из особенностей преобразования Лапласа, которые предопределили его широкое распространение в научных и инженерных расчётах, является то, что многим соотношениям и операциям над оригиналами соответствуют более простые соотношения над их изображениями.
1. Прямое преобразование Лапласа
Преобразованием Лапласа функции действительной переменной
, называется функция комплексной переменной , такая что:Правая часть этого выражения называется интегралом Лапласа.
2. Обратное преобразование Лапласа
Обратным преобразованием Лапласа функции комплексного переменного
, называется функция действительного переменного, такая что:где
— некоторое вещественное число. Правая часть этого выражения называется интегралом Бромвича.3. Двустороннее преобразование Лапласа
Двустороннее преобразование Лапласа — обобщение на случай задач, в которых для функции
участвуют значения x < 0Двустороннее преобразование Лапласа определяется следующим образом:
4. Дискретное преобразование Лапласа
Применяется в сфере систем компьютерного управления. Дискретное преобразование Лапласа может быть применено для решётчатых функций.
Различают
·
-преобразованиеПусть
решётчатая функция, то есть значения этой функции определены только в дискретные моменты времени
, где — целое число, а — период дискретизации. Тогда применяя преобразование Лапласа получим:·
-преобразованиеЕсли применить следующую замену переменных:
получим Z-преобразование:
· Абсолютная сходимость
Если интеграл Лапласа абсолютно сходится при σ = σ0, то есть существует предел
то он сходится абсолютно и равномерно для
и F(s) — аналитическая функция при ( — действительная часть комплексной переменной s). Точная нижняя грань σa множества чисел σ, при которых это условие выполняется, называется абсциссой абсолютной сходимости преобразования Лапласа для функции f(x).· Условия существования прямого преобразования Лапласа
Преобразование Лапласа
существует в смысле абсолютной сходимости в следующих случаях:1. Случай
: преобразование Лапласа существует, если существует интеграл2. Случай σ > σa: преобразование Лапласа существует, если интеграл
существует для каждого конечного
x1 > 0 и
для3. Случай σ > 0 или σ > σa (какая из границ больше): преобразование Лапласа существует, если существует преобразование Лапласа для функции f'(x) (производная к f(x)) для σ > σa.
Примечание: это достаточные условия существования.
· Условия существования обратного преобразования Лапласа
Для существования обратного преобразования Лапласа достаточно выполнение следующих условий:
1. Если изображение F(s) — аналитичная функция для
и имеет порядок меньше −1, то обратное преобразование для неё существует и непрерывно для всех значений аргумента, причём для2. Пусть
,так что
аналитична относительно каждого zk и равна нулю для
, итогда обратное преобразование существует и соответствующее прямое преобразование имеет абсциссу абсолютной сходимости.
Примечание: это достаточные условия существования.
· Теорема о свёртке
Преобразованием Лапласа свёртки двух оригиналов является произведение изображений этих оригиналов.
· Умножение изображений
Левая часть этого выражения называется интегралом Дюамеля, играющим важную роль в теории динамических систем.
· Дифференцирование и интегрирование оригинала
Изображением по Лапласу первой производной от оригинала по аргументу является произведение изображения на аргумент последнего за вычетом оригинала в нуле справа.
В более общем случае (производная n-го порядка):
Изображением по Лапласу интеграла от оригинала по аргументу является изображение оригинала деленное на свой аргумент.
· Дифференцирование и интегрирование изображения. Обратное преобразование Лапласа от производной изображения по аргументу есть произведение оригинала на свой аргумент, взятое с обратным знаком.
Обратное преобразование Лапласа от интеграла изображения по аргументу есть оригинал этого изображения, деленный на свой аргумент.
· Запаздывание оригиналов и изображений. Предельные теоремы
Запаздывание изображения:
Запаздывание оригинала:
Примечание: u(x) — Функция Хэвисайда.
Теоремы о начальном и конечном значении (предельные теоремы):
Все полюсы в левой полуплоскости. Теорема о конечном значении очень полезна, так как описывает поведение оригинала на бесконечности с помощью простого соотношения. Это, к примеру, используется для анализа устойчивости траектории динамической системы.