Некоторые темы геометрии
ТЕМА 1. Скалярные и векторные величины
ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ СКАЛЯРНЫХ И ВЕКТОРНЫХ ВЕЛИЧИН.
Величины называют скалярными (скалярами), если они после выбора единиц измерения полностью характеризуются одним числом.
Если некоторая скалярная величина полностью определяется одним числом, не зависящим от выбора осей отсчета, то тогда говорят о чистой скалярной величине или об истинном скаляре.
Если некоторая скалярная величина определяется одним числом, абсолютная величина которого не зависит от выбора осей отсчета, а ее знак зависит от выбора положительного направления на осях координат, то тогда говорят о псевдоскалярной величине
ВЕКТОР
Величина называется вектором (векторной), если она определяется двумя элементами различной природы: алгебраическим элементом - числом, показывающим длину вектора и являющимся скаляром, и геометрическим элементом, указывающим направление вектора.
Геометрически принято изображать вектор направленным отрезком. Зная координаты начала и конца вектора
СЛОЖЕНИЕ И ВЫЧИТАНИЕ ВЕКТОРОВ
Сложение и вычитание
|
Математически сложение записывают
Если в пространстве задано несколько векторов, число которых больше двух, то операцию сложения (вычитания) записывают как
Умножение вектора на скалярную величину. При умножении вектора
КОЛЛИНЕАРНЫЕ И КОМПЛАНАРНЫЕ ВЕКТОРЫ
Два одинаково направленных и параллельных вектора называют коллинеарными. Коллинеарные векторы могут быть разной длины
Два вектора
Три вектора
ТЕМА 2. Действия над векторами
СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ
Скалярным произведением двух векторов
В этом случае результат представляет собой проекцию вектора
Если скалярное произведение двух векторов равно нулю, то эти векторы ортогональны. Действительно, если ни один из векторов не нулевой, то, по определению скалярного произведения, последнее может быть равно нулю только тогда, когда
РАЗЛОЖЕНИЕ ВЕКТОРА ПО КООРДИНАТНЫМ ОРТАМ.
Если вектор представлен через проекции на базисные векторы, то говорят о разложении вектора
Из определения скалярного произведения следует, что любой вектор, независимо от типа, можно представить в виде:
где
где a, b и g - углы, которые составляет вектор
СВОЙСТВА СКАЛЯРНОГО ПРОИЗВЕДЕНИЯ.
Если скалярное произведение двух векторов равно нулю, то эти векторы ортогональны. Действительно, если ни один из векторов не нулевой, то, по определению скалярного произведения, последнее может быть равно нулю только тогда, когда
СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ В КООРДИНАТНОЙ ФОРМЕ
Скалярное произведение векторов в координатной форме
ТЕМА 3. Векторное произведение векторов. Смешанное произведение трех
векторов.
ПРАВАЯ И ЛЕВАЯ ТРОЙКИ ВЕКТОРОВ
Линейно независимые векторы
Три единичных вектора i, j, k, попарно ортогональные друг другу и образующие правую тройку векторов, называют прямоугольной декартовой системой координат.
Углом между векторами