Министерство образования Российской Федерации
Ставропольский Государственный университет
Кафедра математического анализа
Курсовая работа на тему :
«Дзета-функция Римана»
Выполнил: студент 2го курса ФМФ группы «Б» Симонян Сергей Олегович
Ставрополь, 2004 г.
Введение.
Функция – одно из основных понятий во всех естественнонаучных дисциплинах. Не случайно ещё в средней школе дети получают интуитивное представление об этом понятии. Со школьной скамьи наш багаж знаний пополняется сведениями о таких функциях как линейная, квадратичная, степенная, показательная, тригонометрические и других. В курсе высшей математики круг известных функций значительно расширяется. Сюда добавляются интегральные и гиперболические функции, эйлеровы интегралы (гамма- и бета-функции), тета-функции, функции Якоби и многие другие.
Что же такое функция? Строгого определения для неё не существует. Это понятие является в математике первичным, аксиоматизируется. Однако, под функцией понимают закон, правило, по которому каждому элементу какого-то множества X ставится в соответствие один или несколько элементов множества Y. Элементы множества X называются аргументами, а множества Y – значениями функции. Если каждому аргументу соответствует одно значение, функция называется однозначной, если более одного – то многозначной. Синонимом функции является термин «отображение». В простейшем случае множество X может быть подмножеством поля действительных R или комплексных C чисел. Тогда функция называется числовой. Нам будут встречаться только такие отображения.
Функции могут быть заданы многими различными способами: словесным, графическим, с помощью формулы. Функция, которую мы будем рассматривать в этой работе, задаётся через бесконечный ряд. Но, несмотря на такое нестандартное определение, по своему представлению в виде ряда она может быть хорошо изучена методами теории рядов и плодотворно применена к различным теоретическим и прикладным вопросам математики и смежных с ней наук.
Конечно же, речь идёт о знаменитой дзета-функции Римана, имеющей широчайшие применения в теории чисел. Впервые ввёл её в науку великий швейцарский математик и механик Леонард Эйлер и получил многие её свойства. Далее активно занимался изучением дзета-функции немецкий математик Бернгард Риман. В честь него она получила своё название, так как он опубликовал несколько исключительно выдающихся работ, посвящённых этой функции. В них он распространил дзета-функцию на область комплексных чисел, нашёл её аналитическое продолжение, исследовал количество простых чисел, меньших заданного числа, дал точную формулу для нахождения этого числа с участием функции
и высказал свою гипотезу о нулях дзета-функции, над доказательством или опровержением которой безрезультатно бьются лучшие умы человечества уже почти 150 лет.Научная общественность считала и считает решение этой проблемы одной из приоритетных задач. Так Давид Гильберт, выступавший на Международной Парижской математической конференции 1900 году с подведением итогов развития науки и рассмотрением планов на будущее, включил гипотезу Римана в список 23 проблем, подлежащих решению в новом столетии и способных продвинуть науку далеко вперёд. А на рубеже веков, в 2000 году американский The Clay Mathematics Institute назвал семь задач, за решение каждой из которых будет выплачен 1 миллион долларов. В их число также попала гипотеза Римана.
Таким образом, даже бы поверхностное знакомство с дзета-функцией будет и интересным, и полезным.
Глава 1.
Итак, приступим к изучению этой важной и интересной дзета-функции Римана. В данной главе мы получим некоторые свойства функции в вещественной области, исходя из её определения с помощью ряда.
Определение. Дзета-функцией Римана ζ(s) называют функцию, которая любому действительному числу s ставит в соответствие сумму ряда
(1)если она существует.
Основной характеристикой любой функции является область определения. Найдём её для нашей функции.
Пусть сначала s≤0, тогда s=−t, где t принадлежит множеству неотрицательных действительных чисел R+
{0}. В этом случае и ряд (1) обращается в ряд , который, очевидно, расходится как при t>0, так и при t=0. То есть значения s≤0 не входят в область определения функции.Теперь пусть s>0. Для исследования сходимости ряда (1) воспользуемся интегральным признаком Коши. При каждом s рассмотрим функцию
, где , которая является на промежутке непрерывной, положительной и монотонно убывающей. Возникает три различных возможности:1) 0<s<1. Тогда
, поэтому ряд (1) расходится и промежуток (0;1) не входит в область определения дзета-функции;2) s=1. Получаем
, то есть при s=1 дзета-функция Римана также не определена;3) s>1. В этом случае
. Ряд (1) сходится.Обобщив результаты, находим, что область определения дзета-функции есть промежуток
. На этом промежутке функция оказывается непрерывной и дифференцируемой бесконечное число раз.Докажем непрерывность функции ζ(s) на области определения. Возьмём произвольное число s0>1. Перепишем ряд (1) в виде
. Как было выше показано, ряд сходится, а функции при s>s0 монотонно убывают и все вместе ограничены единицей. Значит, по признаку Абеля для s>s0 ряд (1) сходится равномерно. Используя теорему о непрерывности суммы функционального ряда, получаем, что в любой точке s>s0 дзета-функция непрерывна. Ввиду произвольности s0ζ(s) непрерывна на всей области определения.Теперь почленным дифференцированием ряда (1), пока формально, найдём производную дзета-функции Римана:
(2).Чтобы оправдать этот результат, достаточно удостовериться в том, что ряд (2) равномерно сходится на промежутке
и воспользоваться теоремой о дифференцировании рядов. Используем тот же приём. Зафиксируем любое s0>1 и представим ряд (2) в виде для s>s0. Множители , начиная с n=2, монотонно убывают, оставаясь ограниченными числом ln 2. Поэтому по признаку Абеля ряд (2) сходится равномерно при s>s0, а значит и при любом s>1. Какое бы значение s>1 ни взять его можно заключить между и , где , а ; к промежутку применима вышеуказанная теорема.Таким же путём можно убедиться в существовании для дзета-функции производных всех порядков и получить их выражения в виде рядов:
.Попытаемся построить наглядное изображение функции в виде графика. Для этого изучим сначала её поведение на бесконечности и в окрестности точки s=1.
В первом случае, ввиду равномерной сходимости ряда (1), по теореме о почленном переходе к пределу, имеем
. При n=1 предел равен единице, остальные пределы равны нулю. Поэтому .Чтобы исследовать случай
, докажем некоторые вспомогательные оценки.Во-первых, известно, что если для ряда
существует непрерывная, положительная, монотонно убывающая функция , определённая на множестве , такая, что , и имеет первообразную , то остаток ряда оценивается так: , где . Применяя вышесказанное к ряду (1), найдём, что необходимая функция