Смекни!
smekni.com

Численные методы 6 (стр. 2 из 3)

Кусочно- квадратичная φ(x) вида (10.3) внутри интервала (x2n-2-x2n),

является непрерывной и дифференцируемой два раза, а в точках x2i

является непрерывной, но не дифференцируемой.

Определение Сплайна

Пусть на отрезке [a;b] задана некоторая система узлов a0x0< x1<…<xnb

Сплайном Sn(x) называется функция, которая определена на [a;b], l раз непрерывна и дифференцируема на нем, при этом на каждом из отрезков

к-1; хк], к =

, представляет собой многочлен степени m.

Разность (m-1) называется дефектом Сплайна (показывает разность между степенью составляющих его многочленов и степенью гладкости общей функции).

Если сплайн построен по некоторой таблично заданной функции f(x) таким образом, что S(хi)= f(xi); xi , i=

- узлы интерполяции, то сплайн называют интерполяционным. Узлы сплайна и узлы интерполяции функции могут не совпадать.

Очевидно, что функция (10.1) является интерполяционным сплайном степени 1, дефекта 1, а кусочно-квадратичная функция (10.3) является интерполяционным сплайном, степени 2, дефекта 2.

Интерполяционный сплайн степени 3, дефекта 1.

Дважды непрерывно – дифференцируемый – сплайн.

Пусть задана табличная функция на [a;b], причем a= χ0 ≤ χ1<…< χn=b (узлы сплайна совпадают с узлами интерполяции). Общий вид:

Условия:

1.) g(xi) = f(xi)=yi , i=

2.) g(x) = c2 (дважды дифференцируема) [a;b]

3.) – краевые условия

Для нахождения неизвестных коэффициентов введем функцию

gn(x) = ak(x-xk)3+ bk(x-xk)2+c1(x-xk)+dk, xÎ[ xk-1;xk]

1.) g1(x0) = y0 , g1(x1) = y1 , g2(x2) = y2 ,… gn(xn) = yn

2.) первое условие (сплайн интерполяционный)

3.)

Краевые условия:

Таким образом, для нахождения 4n неизвестных мы построим 4n условий.

Теорема(10.1). Интерполяционный сплайн вида (10.5) для функции f(x) единственен.

Теорема(10.2). Пусть g(x)- интерполяционный сплайн степени 3 дефекта 1, построенный для функции f(x) С4 на отрезке [a;b], тогда для

найдется такая константа C>0, что:

|f(x)- g(x)|<C

4,
[a ;b],

= max(xk-xk-1), 1≤ k ≤ n

- максимальное расстояние между узлами интерполяции.

Линейный фильтр

Понятие линейного сплайна позволяет сформулировать подходы к построению линейных фильтров, предназначенных для устранения случайных ошибок в данных.

Обычно в ходе измерений на процесс фиксации данных оказывают влияние случайные помехи. Для того, чтобы уменьшить влияние этих помех на качество интерполяции осуществляют пересчет значений функции в узлах интерполяции по следующей формуле:

Квадратичный сплайн дефекта один

Узлы этого сплайна не совпадают с узлами интерполяции функции.

Пусть узлы интерполяции заданы на [a;b]

- узлы сплайна, f(xi)=yi

,
,

Для сплайна n+2 узлов

Квадратичный сплайн дефекта 1 имеет вид:

Условия:

1.)

2.) P(x) ÎC'[a;b],

первая непрерывная производная во всех точках [a;b]

3.) Краевые условия:

P''(a)=A; P''(b)=B;

A и B- константы и желательно разные;

Чтобы построить сплайн необходимо найти 3n+3 неизвестных коэффициента. С этой целью сформирую функцию:

Pn(x)= ak

2+bn
+ck

Условия:

1.) Pi+1=yi, i=

- n+1 условий

2.) Pk

= Pk+1
,

P'k

=P'k+1
,

3.) P1

=A, P''n+1
-B – краевые условия;

Теорема 11.1. Квадр. Сплайн дефекта один, вида (11.1) для функции существует и единственен.

Теорема 11.2. Пусть функция f(x) дважды непрерывна и дифференцируема на [a;b], а P(x)- сплайн вида (11.1), тогда для

, (n- связано с числом узлов интерполяции)
такие constc0, c1, c2; что для
из [a;b] выполняются следующие неравенства:

| f(x)-P(x) | ≤ C02

| f '(x)-P' (x)|

≤C∆

| f ''(x)-P'' (x)|

≤C2

где ∆- максимальное расстояние между узлами интерполяции, т.е ∆= max(xk-xk-1) 1≤k≤n

Метод наименьших квадратов

1. Формула метода наименьших квадратов, для линейной функции нескольких переменных.

2. Типовые способы преобразования нелинейной функции к линейной.

3. Метод наименьших квадратов для системы линейно – независимых функций.

4. Ряды и полиномы Фурье с использованием метода наименьших квадратов.

Пусть аппроксимируемая функция представляет собой функции n переменных y= f(x1…xn), которая задана таблицей своих значений:

информационная матрица

Такие таблицы формируются в ходе эксперимента для реальных объектов, у которых есть одна выходная переменная (отклик), которая зависит от нескольких выходных переменных (факторов).

необходимо аппроксимировать нашу функцию при помощи построения линейной функции (приближающей).

Необходимо построить приближение данной функции f(x1…xn), заданной инфо - матрицей посредством функции φ (x1…xn)=y, которая должна быть линейной, т.е. ее общий вид:

y= φ (x1…xn)=b0+b1x1+…+bnxn(11.2)

bi – неизвестные коэффициенты (параметры)

Задача аппроксимации состоит в определении bi.

Каков критерий для выбора этих параметров?

Пусть f(x)-функция одной переменной и точки, в которой она определена, изображены на координатной плоскости.

Проводим прямую, минимизируем сумму квадратов расстояний.

Поскольку в ходе эксперимента на объект могут воздействовать случайные помехи, то в инфо – матрице могут присутствовать значения, которые не характерны для самой функции, в силу этого требовать от аппроксимирующей функции совпадения значений со значениями исходной функции во всех точках неверно.

Необходимо минимизировать сумму квадратов отклонений аппроксимирующей функции от исходных в заданных точках:

(11.3)

Для данной задачи критерий (11.3) будет иметь вид:

(11.4)