Национальный научно-исследовательский университет
-ИрГТУ-
Кафедра прикладной геологии
Реферат по высшей математике
На тему: «Основные элементарные функции,
их свойства и графики»
Выполнил:
.
Проверил:
преподаватель
Коваленко Е.В.
Иркутск 2010
Содержание:
Тригонометрические функции:- 3 -
Обратные тригонометрические функции:- 3 -
Список использованной литературы:- 3 -
Определение. Функция, заданная формулой у=ах (где а>0, а≠1), называется показательной функцией с основанием а.
Сформулируем основные свойства показательной функции :
1. Область определения — множество (R) всех действительных чисел.
2. Область значений — множество (R+) всех положительных действительных чисел.
3. При а > 1 функция возрастает на всей числовой прямой; при 0<а<1 функция убывает.
4. Является функцией общего вида.
, на интервале xÎ [-3;3] , на интервале xÎ [-3;3]Функция вида у(х)=хn, где n – число ÎR, называется степенной функцией. Число n может принимать раличные значения: как целые, так и дробные, как четные, так и нечетные. В зависимости от этого, степенная функция будет иметь разный вид. Рассмотрим частные случаи, которые являются степенными функциями и отражают основные свойства данного вида кривых в следующем порядке: степенная функция у=х² (функция с четным показателем степени – парабола), степенная функция у=х³ (функция с нечетным показателем степени – кубическая парабола) и функция у=√х (х в степени ½) (функция с дробным показателем степени), функция с отрицательным целым показателем (гипербола).
Степенная функция у=х²
1. D(x)=R – функция определена на все числовой оси;
2. E(y)=[0;∞) - функция принимает положительные значения на всей области определения;
3. При х=0 у=0 - функция проходит через начало координат O(0;0).
4. Функция убывает на промежутке (-∞;0] и возрастает на промежутке [0;∞).
5. Функция является четной (симметрична относительно оси Оу).
В зависимости от числового множителя, стоящего перед х², функция может быть уже/шире и направлена вверх/вниз.
, на интервале xÎ [-3;3]Степенная функция у=х³
1. График функции у=х³ называется кубической параболой. Степенная функция у=х³ обладает следующими свойствами:
2. D(x)=R – функция определена на все числовой оси;
3. E(y)=(-∞;∞) – функция принимает все значения на своей области определения;
4. При х=0 у=0 – функция проходит через начало координат O(0;0).
5. Функция возрастает на всей области определения.
6. Функция является нечетной (симметрична относительно начала координат).
, на интервале xÎ [-3;3]В зависимости от числового множителя, стоящего перед х³, функция может быть крутой/пологой и возрастать/убывать.
Степенная функция с целым отрицательным показателем:
Если показатель степени n является нечетным, то график такой степенной функции называется гиперболой. Степенная функция с целым отрицательным показателем степени обладает следующими свойствами:
1. D(x)=(-∞;0)U(0;∞) для любого n;
2. E(y)=(-∞;0)U(0;∞), если n – нечетное число; E(y)=(0;∞), если n – четное число;
3. Функция убывает на всей области определения, если n – нечетное число; функция возрастает на промежутке (-∞;0) и убывает на промежутке (0;∞), если n – четное число.
4. Функция является нечетной (симметрична относительно начала координат), если n – нечетное число; функция является четной, если n – четное число.
5. Функция проходит через точки (1;1) и (-1;-1), если n – нечетное число и через точки (1;1) и (-1;1), если n – четное число.
, на интервале xÎ [-3;3]Степенная функция с дробным показателем
Степенная функция с дробным показателем вида (картинка) имеет график функции, изображенный на рисунке. Степенная функция с дробным показателем степени обладает следующими свойствами: (картинка)
1. D(x) ÎR, если n – нечетное число и D(x)=[0;∞), если n – четное число ;
2. E(y) Î (-∞;0)U(0;∞), если n – нечетное число; E(y)=[0;∞), если n – четное число;
3. Функция возрастает на всей области определения для любого числа n.
4. Функция проходит через начало координат в любом случае.
, на интервале xÎ [0;3] , на интервале xÎ [0;5] , на интервале xÎ [-3;3]Логарифмическая функция у = loga x обладает следующими свойствами :
1. Область определения D(x)Î (0; + ∞).
2. Область значений E(y) Î ( - ∞; + ∞)
3. Функция ни четная, ни нечетная (общего вида).
4. Функция возрастает на промежутке (0; + ∞) при a > 1, убывает на (0; + ∞) при 0 < а < 1.
График функции у = loga x может быть получен из графика функции у = ах с помощью преобразования симметрии относительно прямой у = х. На рисунке 9 построен график логарифмической функции для а > 1, а на рисунке 10 - для 0 < a < 1.
; на интервале xÎ [0;5] ; на интервале xÎ [0;5]Функции y = sin х, у = cos х, у = tg х, у = ctg х называют тригонометрическими функциями.
Функции у = sin х, у = tg х, у = ctg х нечетные, а функция у = соs х четная.
Функция y = sin (х).
1. Область определения D(x) ÎR.
2. Область значений E(y) Î [ - 1; 1].
3. Функция периодическая; основной период равен 2π.
4. Функция нечетная .
5. Функция возрастает на промежутках [ -π/2 + 2πn; π/2 + 2πn] и убывает на промежутках [ π/2 + 2πn; 3π/2 + 2πn], n Î Z.
График функции у = sin (х) изображен на рисунке 11.
; на интервале xÎ [-2 ;2 ]Функция y = cos(х).
1. Область определения D(x) ÎR.
2. Область значений E(y) Î [ - 1; 1].
3. Функция периодическая с основным периодом 2π.
4. Функция четная.
5. Функция убывает на промежутках [2πn; π+ 2πn] и возрастает на промежутках [-π+ 2πn; 2πn], nπZ.
График функции у = соs (х) изображен на рисунке 12.
; на интервале xÎ [-2 ;2 ]Функция y = tg х.
1. Область определения: D(x) Ï π/2 + πk, kÎZ.
2. Область значений E(y) Î (- ∞; + ∞)
3. π- основной период функции.
4. Функция нечетная.
5. Функция возрастает на промежутках ( -π/2 +πn;π/2 +πn).
График функции у = tg х изображен на рисунке 13.
; на интервале xÎ (- ; )