Смекни!
smekni.com

Лекции по Математике 2 (стр. 2 из 10)

П р и м е р .

Умножение дробей. Умножить некоторое число на дробь означает умножить его на числитель и разделить произведение на знаменатель. Следовательно, мы имеем общее правило умножения дробей: для перемножения дробей необходимо перемножить отдельно их числители и знаменатели и разделить первое произведение на второе.

П р и м е р .

Деление дробей. Для того, чтобы разделить некоторое число на дробь, необходимо умножить это число на обратную дробь. Это правило вытекает из определения деления (см. раздел “Арифметические операции”).

П р и м е р .

Десятичные дроби

Десятичная дробь. Целая часть. Десятичная точка.

Десятичные знаки. Свойства десятичных дробей.

Периодическая десятичная дробь. Период.

Десятичная дробь есть результат деления единицы на десять, сто, тысячу и т.д. частей. Эти дроби очень удобны для вычислений, так как они основаны на той же позиционной системе, на которой построены счёт и запись целых чисел. Благодаря этому запись и правила действий с десятичными дробями фактически те же, что и для целых чисел. При записи десятичных дробей нет необходимости отмечать знаменатель, это определяется местом, которое занимает соответствующая цифра. Сначала пишется целая часть числа, затем справа ставится десятичная точка. Первая цифра после десятичной точки означает число десятых, вторая – число сотых, третья – число тысячных и т.д. Цифры, расположенные после десятичной точки, называются десятичными знаками.

П р и м е р .

Одно из преимуществ десятичных дробей – они легко приводятся к виду обыкновенных: число после десятичной точки (в нашем случае 5047) – это числитель; знаменатель же равен n–ой степени 10, где n - количество десятичных знаков (в нашем случае n = 4):

Если десятичная дробь не содержит целой части, то перед десятичной точкой ставится ноль:

Свойства десятичных дробей.

1. Десятичная дробь не меняется, если справа добавить нули:

13.6 =13.6000.

2. Десятичная дробь не меняется, если удалить нули, расположенные

в конце десятичной дроби:

0.00123000 = 0.00123 .

Внимание! Нельзя удалять нули, расположенные не в конце десятичной дроби!

3. Десятичная дробь возрастает в 10, 100, 1000 и т.д. раз, если перенести десятичную точку на одну, две, три и т.д. позиций вправо: 3.675 ---> 367.5 (дробь возросла в 100 раз).
4. Десятичная дробь уменьшается в 10, 100, 1000 и т.д. раз, если перенестидесятичную точку на одну, две, три и т.д. позиций влево: 1536.78 ---> 1.53678 (дробь уменьшилась в 1000 раз).

Эти свойства позволяют быстро умножать и делить десятичные дроби на 10, 100, 1000 и т.д.

Периодическая десятичная дробь содержит бесконечно повторяющуюся группу цифр, называемую периодом. Период записывается в скобках. Например, 0.12345123451234512345… = 0.(12345).

П р и м е р . Если разделить 47 на 11, то получим 4.27272727… = 4.(27).

Действия с десятичными дробями

Сложение и вычитание десятичных дробей.

Умножение десятичных дробей.

Деление десятичных дробей.

Сложение и вычитание десятичных дробей. Эти операции выполняются так же, как и сложение и вычитание целых чисел. Необходимо только записать соответствующие десятичные знаки один под другим.

П р и м е р .

Умножение десятичных дробей. На первом этапе перемножаем десятичные дроби как целые числа, не принимая во внимание десятичную точку. Затем применяется следующее правило: количество десятичных знаков в произведении равно сумме десятичных знаков во всех сомножителях.

Замечание: до простановки десятичной точки в произведении нельзя отбрасывать нули в конце!

П р и м е р .

Сумма чисел десятичных знаков в сомножителях равна: 3 + 4 = 7. Сумма цифр в произведении равна 6. Поэтому необходимо добавить один ноль слева: 0197056 и проставить перед ним десятичную точку: 0.0197056.

Деление десятичных дробей

Деление десятичной дроби на целое число

Если делимое меньше делителя, записываем ноль в целой части частного и ставим после него десятичную точку. Затем, не принимая во внимание десятичную точку делимого, присоединяем к его целой части следующую цифру дробной части и опять сравниваем полученную целую часть делимого с делителем. Если новое число опять меньше делителя, ставим ещё один ноль после десятичной точки в частном и присоединяем к целой части делимого следующую цифру его дробной части. Этот процесс повторяем до тех пор, пока полученное делимое не станет больше делителя. После этого деление выполняется, как для целых чисел. Если делимое больше делителя или равно ему, сначала делим его целую часть, записываем результат деления в частном и ставим десятичную точку. После этого деление продолжается, как в случае целых чисел.

П р и м е р . Разделить 1.328 на 64.

Р е ш е н и е :

Деление одной десятичной дроби на другую.

Сначала переносим десятичные точки в делимом и делителе на число десятичных знаков в делителе, то есть делаем делитель целым числом. Теперь выполняем деление, как в предыдущем случае.

П р и м е р . Разделить 0.04569 на 0.0006.

Р е ш е н и е. Переносим десятичные точки на 4 позиции вправо и делим 456.9 на 6:

Обращение десятичной дроби в обыкновенную и обратно

Для того, чтобы обратить десятичную дробь в обыкновенную, надо в качестве числителя взять число, стоящее после десятичной точки, а в качестве знаменателя взять n-ую степень десяти ( здесь n – количество десятичных знаков ). Отличная от нуля целая часть сохраняется в обыкновенной дроби; нулевая целая часть опускается. Например:

Для того, чтобы обратить обыкновенную дробь в десятичную, надо разделить числитель на знаменатель в соответствии с правилами деления.

П р и м е р . Обратить 5 / 8 в десятичную дробь.

Р е ш е н и е . Деля 5 на 8, получаем 0.625. ( Проверьте, пожалуйста! ).

В большинстве случаев этот процесс может продолжаться бесконечно. Тогда невозможно точно обратить обыкновенную дробь в десятичную. Но на практике это никогда и не требуется. Деление прерывается, если представляющие интерес десятичные знаки уже получены.

П р и м е р . Обратить 1 / 3 в десятичную дробь.

Р е ш е н и е . Деление 1 на 3 будет бесконечным: 1:3 = 0.3333… .

Проверьте это, пожалуйста!

Проценты

Процент – это сотая часть единицы. Запись 1% означает 0.01. Существует три основных типа задач на проценты:

Задача 1. Найти указанный процент от заданного числа.
Заданное число умножается на указанное число процентов, а затем произведение делится на 100.
П р и м е р . Вклад в банке имеет годовой прирост 6%. Начальная сумма вклада равнялась 10000 руб. На сколько возрастёт сумма вклада в конце года?

Р е ш е н и е : 10000 · 6 : 100 = 600 руб.

Задача 2. Найти число по заданному другому числу и его величине в процентах от искомого числа. Заданное число делится на его процентное выражение и результат умножается на 100.
П р и м е р . Зарплата в январе равнялась 1500 руб., что составило 7.5% от годовой зарплаты. Какова была годовая зарплата?

Р е ш е н и е : 1500 : 7.5 · 100 = 20000 руб.

Задача 3. Найти процентное выражение одного числа от другого.Первое число делится на второе и результат умножается на 100.
П р и м е р . Завод произвёл за год 40000 автомобилей, а в следующем году – только 36000 автомобилей. Сколько процентов это составило по отношению к выпуску предыдущего года?

Р е ш е н и е : 36000 : 40000 · 100 = 90% .

Отношение и пропорция. Пропорциональность

Отношение. Пропорция. Основное свойство пропорции.

Пропорциональные величины. Коэффициент пропорциональности.

Отношение – это частное от деления одного числа на другое.

Пропорция – это равенство двух отношений. Например,

12 : 20 = 3 : 5; a : b = c : d .

Крайние члены пропорции: 12 и 5 в первой пропорции; a и d – во второй.

Средние члены пропорции: 20 и 3 в первой пропорции; b и с – во второй.

Основное свойство пропорции: Произведение крайних членов пропорции равно произведению её средних членов.

Две взаимно зависимых величины называются пропорциональными, если отношение их величин сохраняется неизменным.

Это постоянное отношение пропорциональных величин называется коэффициентом пропорциональности.