Смекни!
smekni.com

Лекции по Математике 2 (стр. 5 из 10)

Исследование решений системы двух линейных уравнений с двумя неизвестными, показывает, что в зависимости от коэффициентов уравнений возможны три различных случая:

1) коэффициенты при неизвестных не пропорциональны: a : d ≠ b : e ,

в этом случае система линейных уравнений имеет единственное решение, получаемое по формулам (4);

2) все коэффициенты уравнений пропорциональны: a : d = b : e = c : f ,

в этом случае система линейных уравнений имеет бесконечное множество решений, так как здесь мы имеем фактически одно уравнение вместо двух.

П р и м е р . В системе уравнений

и эта система уравнений имеет бесконечное множество решений.

Разделив первое уравнение на 2, а второе – на 3, мы получим два

одинаковых уравнения:

т.е. фактически одно уравнение с двумя неизвестными, у которого

бесконечное множество решений.

3) коэффициенты при неизвестных пропорциональны, но не пропорциональны свободным членам: a: d = b: e ≠ c: f,

в этом случае система линейных уравнений не имеет решений, так как мы имеем противоречивые уравнения.

П р и м е р . В системе уравнений

но отношение свободных членов 7 / 12 не равно 1 / 3.

Почему эта система не имеет решений? Ответ очень простой.

Разделив второе уравнение на 3, мы получим:

Уравнения этой системы противоречивы, потому что одно и то

же выражение 2x – 3y не может быть одновременно равно и 7, и 4.

Системы трёх линейных уравнений с тремя неизвестными

Системы трёх линейных уравнений с тремя неизвестными.

Основные методы решения: подстановка, сложение или вычитание.

Определители третьего порядка. Правило Крамера.

Системы трёх линейных уравнений с тремя неизвестными имеют вид:


где a, b, c, d, e, f, g, h, p, q, r, s – заданные числа; x, y, z – неизвестные. Числа a, b, c, e, f, g, p, q, r – коэффициенты при неизвестных; d, h, s – свободные члены. Решение этой системы может быть найдено теми же двумя основными методами, рассмотренными выше: подстановки и сложения или вычитания. Мы же рассмотрим здесь подробно только метод Крамера.

Во-первых, введём понятие определителя третьего порядка. Выражение

называется определителем третьего порядка.

Запоминать это выражение не нужно, так как его легко получить, если переписать таблицу (2), добавив справа первые два столбца. Тогда оно вычисляется путём перемножения чисел, расположенных на диагоналях, идущих от a, b, c – направо ( со знаком « + » ) и от c, a, b – налево ( со знаком « – » ), и затем суммированием этих произведений:

Используя определитель третьего порядка (2), можно получить решение системы уравнений (1) в виде:

Эти формулы и есть правило Крамера для решения системы трёх линейных уравнений с тремя неизвестными.

П р и м е р . Решить методом Крамера систему трёх линейных уравнений с тремя неизвестными:

Р е ш е н и е . Введём следующие обозначения: D - знаменатель в формулах (4),

Dx, Dy, Dz – числители в выражениях для x, y, z – соответственно.

Тогда используя схему (3), получим:

отсюда по формулам Крамера (4): x = Dx / D = 0 / 32 = 0;

y = Dy / D = 32 / 32 = 1; z = Dz / D = 64 / 32 = 2 .

Степени и корни

Операции со степенями и корнями. Степень с отрицательным,

нулевым и дробным показателем. О выражениях, не имеющих смысла.

Операции со степенями.

1. При умножении степеней с одинаковым основанием их показатели складываются:

a m · a n = a m + n .

2. При делении степеней с одинаковым основанием их показатели вычитаются.

3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.

( abc… ) n = a n · b n · c n …

4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):

( a / b ) n = a n / b n .

5. При возведении степени в степень их показатели перемножаются:

( a m ) n = a m n .

Все вышеприведенные формулы читаются и выполняются в обоих направлениях слева направо и наоборот.

П р и м е р . ( 2 · 3 · 5 / 15 ) ² = 2 ² · 3 ² · 5 ² / 15 ² = 900 / 225 = 4 .

Операции с корнями. Во всех нижеприведенных формулах символ

означает арифметический корень (подкоренное выражение положительно).

1. Корень из произведения нескольких сомножителей равен произведению корней из этих сомножителей:

2. Корень из отношения равен отношению корней делимого и делителя:

3. При возведении корня в степень достаточно возвести в эту степень подкоренное число:

4. Если увеличить степень корня в n раз и одновременно возвести в n-ую степень подкоренное число, то значение корня не изменится:

5. Если уменьшить степень корня в n раз и одновременно извлечь корень n-ой степени из подкоренного числа, то значение корня не изменится:

Расширение понятия степени. До сих пор мы рассматривали степени только с натуральным показателем; но действия со степенями и корнями могут приводить также к отрицательным, нулевым и дробным показателям. Все эти показатели степеней требуют дополнительного определения.

Степень с отрицательным показателем. Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной велечине отрицательного показателя:

Теперь формула a m : a n = a m  n может быть использована не только при m , большем, чем n , но и при m , меньшем, чем n .

П р и м е р . a4 : a7 = a 4  7 = a 3 .

Если мы хотим, чтобы формула a m : a n = a m  n была справедлива при m = n , нам необходимо определение нулевой степени.

Степень с нулевым показателем. Степень любого ненулевого числа с нулевым показателем равна 1.

П р и м е р ы . 2 0 = 1, ( – 5 ) 0 = 1, ( – 3 / 5 ) 0 = 1.

Степень с дробным показателем. Для того, чтобы возвести действительное число а в степень m / n , нужно извлечь корень n–ой степени из m-ой степени этого числа а :

О выражениях, не имеющих смысла. Есть несколько таких выражений.

Случай 1.

где a 0  не существует.

В самом деле, если предположить, что

где x – некоторое число, то в соответствии с

определением операции деления мы имеем: a = 0 · x, т.e. a = 0, что противоречит условию: a 0

Случай 2.

- любое число.

В самом деле, если предположить, что это выражение равно некоторому числу x, то согласно определению операции деления: 0 = 0 · x . Но это равенство имеет место при любом числе x , что и требовалось доказать.

Случай 3.

Если считать, что правила действий со степенями распространяются и на степени с нулевым основанием, то

0 0 - любое число.

Действительно,

Р е ш е н и е . Рассмотрим три основных случая:

1) x = 0 – это значение не удовлетворяет данному уравнению

( Почему? ).

2) при x > 0 получаем: x / x = 1, т.e. 1 = 1, откуда следует,

что x – любое число; но принимая во внимание, что в

нашем случае x > 0 , ответом является x > 0 ;

3) при x < 0 получаем: – x / x = 1, т.e. –1 = 1, следовательно,

в этом случае нет решения.

Таким образом, x > 0.

Арифметический корень

Арифметический корень. Алгебраический корень.

Абсолютная величина ( модуль ) числа.

Как мы знаем, корень чётной степени имеет два значения: положительное и отрицательное. Так,

Арифметическим корнем n–й степени из неотрицательного числа a называется неотрицательное число, n–я степень которого равна a .

Алгебраическим корнем n–й степени из данного числа называется множество всех корней из этого числа. Алгебраический корень чётной степени имеет два значения: положительное и отрицательное, например:

Алгебраический корень нечётной степени имеет единственное значение: либо положительное, либо отрицательное. Например, арифметический корень

И наоборот, кубический корень: