Смекни!
smekni.com

Множественная регрессия (стр. 4 из 4)

Точечный прогноз представляет собой математическое ожидание (среднюю) возможных с разной вероятностью значений прогнозируемого признака. Необходимо дополнить точечный прогноз расчетом доверительных границ с достаточно большой вероятностью. Для этого следует использовать величину средней квадратической ошибки аппроксимации, которая вычисляется по формуле:

(33)

Числитель подкоренного выражения – это остаточная, не объясненная моделью сумма квадратов отклонений результативного признака, а знаменатель – число степеней свободы остаточной вариации. В нашем примере остаточная сумма квадратов отклонений равна 814,3. Имеем:

Следовательно, с надежностью 0,95 прогнозируемая урожайность составит 25,4±4,16·2, или от 17,8 до 33,72 ц/га. Все эти расчеты относятся к прогнозам урожайности для отдельных агрофирм. Если речь идет о средней урожайности по совокупности 51 агрофирмы, то средняя ошибка средней арифметической величины равна среднему квадратическому отклонению, деленному на корень квадратный из объема выборки n, т.е. составит:

Интерпретация этого значения ошибки прогноза средней величины такова: если обеспечить 51 агрофирму факторами x3, x5, x8 на уровнях соответственно 3, 20, 0,8, то будет получена средняя по совокупности урожайность 25,4±0,583 ц/га. С вероятностью 0,95 средняя по совокупности ожидаемая урожайность составит 25,4±0,583·2, или от 23,7 до 27,1 ц/га.

Эконометрической корреляционно-регрессионной моделью системы взаимосвязанных признаков изучаемой совокупности является такое уравнение регрессии, которое включает основные факторы, влияющие на вариацию результативного признака в совокупности, обладает высоким значением коэффициента детерминации (не ниже 0,5), надежными и правильно интерпретируемыми в соответствии (по знаку и по порядку величины) с теорией изучаемой системы коэффициентами регрессии, и в силу данных свойств пригодное для оценки деятельности единиц совокупности и для прогнозирования.