Смекни!
smekni.com

Применение экономико-математического моделирования в прогнозировании издержек (стр. 4 из 9)

Перейдем теперь непосредственно к процессу экономико-математического моделирования, т. е. описания экономиче­ских и социальных систем и процессов в виде экономико-математических моделей. Эта разновидность моделирования обладает рядом существенных особенностей, связанных как с объектом моделирования, так и с применяемыми аппара­том и средствами моделирования. Поэтому целесообразно бо­лее детально проанализировать последовательность и содер­жание этапов экономико-математического моделирования, выделив следующие шесть этапов: постановка экономиче­ской проблемы, ее качественный анализ; построение мате­матической модели; математический анализ модели; подго­товка исходной информации; численное решение; анализ численных результатов и их применение. Рассмотрим каж­дый из этапов более подробно.

1. Постановка экономической проблемы и ее качествен­ный анализ. На этом этапе требуется сформулировать сущность проблемы, принимаемые предпосылки и допу­щения. Необходимо выделить важнейшие черты и свой­ства моделируемого объекта, изучить его структуру и

взаимосвязь его элементов, хотя бы предварительно сформулировать гипотезы, объясняющие поведение и развитие объекта.

2. Построение математической модели. Это этап формали­зации экономической проблемы, т. е. выражения ее в виде конкретных математических зависимостей (функ­ций, уравнений, неравенств и др.). Построение модели подразделяется в свою очередь на несколько стадий. Сначала определяется тип экономико-математической модели, изучаются возможности ее применения в данной задаче, уточняются конкретный перечень переменных и параметров и форма связей. Для некоторых сложных объектов целесообразно строить несколько разноаспектных моделей; при этом каждая модель выделяет лишь некоторые стороны объекта, а другие стороны учитыва­ются агрегировано и приближенно. Оправдано стремле­ние построить модель, относящуюся к хорошо изученному классу математических задач, что может потребовать не­которого упрощения исходных предпосылок модели, не искажающего основных черт моделируемого объекта. Однако возможна и такая ситуация, когда формализа­ция проблемы приводит к неизвестной ранее математи­ческой структуре.

3. Математический анализ модели. На этом этапе чисто математическими приемами исследования выявляются общие свойства модели и ее решений. В частности, важ­ным моментом является доказательство существования решения сформулированной задачи. При аналитическом исследовании выясняется, единственно ли решение, ка­кие переменные могут входить в решение, в каких пре­делах они изменяются, каковы тенденции их изменения и т. д. Однако модели сложных экономических объек­тов с большим трудом поддаются аналитическому ис­следованию; в таких случаях переходят к численным методам исследования.

4. Подготовка исходной информации. В экономических задачах это, как правило, наиболее трудоемкий этап мо­делирования, так как дело не сводится к пассивному сбору данных. Математическое моделирование предъявляет жесткие требования к системе информации; при этом надо принимать во внимание не только принципиаль­ную возможность подготовки информации требуемого качества, но и затраты на подготовку информационных массивов. В процессе подготовки информации использу­ются методы теории вероятностей, теоретической и ма­тематической статистики для организации выборочных обследований, оценки достоверности данных и т.д. При системном экономико-математическом моделировании результаты функционирования одних моделей служат исходной информацией для других.

5. Численное решение. Этот этап включает разработку ал­горитмов численного решения задачи, подготовку про­грамм на ЭВМ и непосредственное проведение расчетов;

при этом значительные трудности вызываются большой размерностью экономических задач. Обычно расчеты на основе экономико-математической модели носят много­вариантный характер. Многочисленные модельные экс­перименты, изучение поведения модели при различных условиях возможно проводить благодаря высокому бы­стродействию современных ЭВМ. Численное решение существенно дополняет результаты аналитического ис­следования, а для многих моделей является единствен­но возможным.

6. Анализ численных результатов и их применение. На этом этапе прежде всего решается важнейший вопрос о правильности и полноте результатов моделирования и применимости их как в практической деятельности, так и в целях усовершенствования модели. Поэтому в первую очередь должна быть проведена проверка адек­ватности модели по тем свойствам, которые выбраны в качестве существенных (другими словами, должны быть произведены верификация и валидация модели). При­менение численных результатов моделирования в эко­номике направлено на решение практических задач (анализ экономических объектов, экономическое про­гнозирование развития хозяйственных и социальных процессов, выработка управленческих решений на всех уровнях хозяйственной иерархии).

Перечисленные этапы экономико-математического моде­лирования находятся в тесной взаимосвязи, в частности, мо­гут иметь место возвратные связи этапов. Так, на этапе по­строения модели может выясниться, что постановка задачи или противоречива, или приводит к слишком сложной ма­тематической модели; в этом случае исходная постановка задачи должна быть скорректирована. Наиболее часто необ­ходимость возврата к предшествующим этапам моделирова­ния возникает на этапе подготовки исходной информации. Если необходимая информация отсутствует или затраты на ее подготовку слишком велики, приходится возвращаться к этапам постановки задачи и ее формализации, чтобы при­способиться к доступной исследователю информации.

Выше уже сказано о циклическом характере процесса моделирования. Недостатки, которые не удается исправить на тех или иных этапах моделирования, устраняются в по­следующих циклах. Однако результаты каждого цикла име­ют и вполне самостоятельное значение. Начав исследование с построения простой модели, можно получить полезные ре­зультаты, а затем перейти к созданию более сложной и более совершенной модели, включающей в себя новые условия и более точные математические зависимости.

2.3. Классификация экономико-математических методов и моделей

Суть экономико-математического моделирования заклю­чается в описании социально-экономических систем и про­цессов в виде экономико-математических моделей. Экономико-математические ме­тоды следует понимать как инструмент, а экономико-мате­матические модели — как продукт процесса экономико-ма­тематического моделирования.

Рассмотрим вопросы классификации экономико-матема­тических методов. Эти методы, как отмечено выше, представляют собой комплекс экономико-математических дис­циплин, являющихся сплавом экономики, математики и ки­бернетики. Поэтому классификация экономико-математических методов сводится к классификации научных дисцип­лин, входящих в их состав. Хотя общепринятая классифи­кация этих дисциплин пока не выработана, с известной сте­пенью приближения в составе экономико-математических методов можно выделить следующие разделы:

экономическая кибернетика: системный анализ эконо­мики, теория экономической информации и теория управляющих систем;

математическая статистика: экономические прило­жения данной дисциплины — выборочный метод, дис­персионный анализ, корреляционный анализ, регресси­онный анализ, многомерный статистический анализ, факторный анализ, теория индексов и др.;

математическая экономия и изучающая те же вопросы с количественной стороны эконометрия: теория эконо­мического роста, теория производственных функций, межотраслевые балансы, национальные счета, анализ спроса и потребления, региональный и пространствен­ный анализ, глобальное моделирование и др.;

методы принятия оптимальных решений, в том числе исследование операций в экономике. Это наиболее объ­емный раздел, включающий в себя следующие дисцип­лины и методы: оптимальное (математическое) програм­мирование, в том числе методы ветвей и границ, сетевые методы планирования и управления, программно-целе­вые методы планирования и управления, теорию и мето­ды управления запасами, теорию массового обслужива­ния, теорию игр. теорию и методы принятия решений. теорию расписаний. В оптимальное (математическое) программирование входят в свою очередь линейное про­граммирование, нелинейное программирование, динами­ческое программирование, дискретное (целочисленное) программирование, дробно-линейное программирование, параметрическое программирование, сепарабельное про­граммирование, стохастическое программирование, гео­метрическое программирование;

методы и дисциплины, специфичные отдельно как для централизованно планируемой экономики, так и для. ры­ночной (конкурентной) экономики. К первым можно отнести теорию оптимального функционирования эконо­мики, оптимальное планирование, теорию оптимального ценообразования, модели материально-технического снаб­жения и др. Ко вторым — методы, позволяющие разра­ботать модели свободной конкуренции, модели капита­листического цикла, модели монополии, модели индика­тивного планирования, модели теории фирмы и т. д. Многие из методов, разработанных для централизованно планируемой экономики, могут оказаться полезными и при экономико-математическом моделировании в усло­виях рыночной экономики;

методы экспериментального изучения экономических явлений. К ним относят, как правило, математические методы анализа и планирования экономических экспери­ментов, методы машинной имитации (имитационное мо­делирование), деловые игры. Сюда можно отвести также и методы экспертных оценок, разработанные для оценки явлений, не поддающихся непосредственному измерению. Перейдем теперь к вопросам классификации экономико-математических моделей, другими словами, математических моделей социально-экономических систем и процессов. Единой системы классификации таких моделей в настоя­щее время также не существует, однако обычно выделяют более десяти основных признаков их классификации, или классификационных рубрик. Рассмотрим некоторые из этих рубрик.