По общему целевому назначению экономико-математические модели делятся на теоретико-аналитические, используемые при изучении общих свойств и закономерностей экономических процессов, и прикладные, применяемые в решении конкретных экономических задач анализа, прогнозирования и управления. Различные типы прикладных экономико-математических моделей как раз и рассматриваются в данном учебном пособии.
По степени агрегирования объектов моделирования модели разделяются на макроэкономические и микроэкономические. Хотя между ними и нет четкого разграничения, к первым из них относят модели, отражающие функционирование экономики как единого целого, в то время как микроэкономические модели связаны, как правило, с такими звеньями экономики, как предприятия и фирмы.
По конкретному предназначению, т. е. по цели создания и применения, выделяют балансовые модели, выражающие требование соответствия наличия ресурсов и их использования; трендовые модели, в которых развитие моделируемой экономической системы отражается через тренд (длительную тенденцию) ее основных показателей; оптимизационныемодели, предназначенные для выбора наилучшего варианта из определенного числа вариантов производства, распределения или потребления; имитационныемодели, предназначенные для использования в процессе машинной имитации изучаемых систем или процессов и др.
По типу информации, используемой в модели экономико-математические модели делятся на аналитические, построенные на априорной информации, и идентифицируемые, построенные на апостериорной информации.
По учету фактора времени модели подразделяются на статические, в которых все зависимости отнесены к одному моменту времени, и динамические, описывающие экономические системы в развитии.
По учету фактора неопределенности модели распадаются на детерминированные, если в них результаты на выходе однозначно определяются управляющими воздействиями, и стохастические (вероятностные), если при задании на входе модели определенной совокупности значений на ее выходе могут получаться различные результаты в зависимости от действия случайного фактора.
Экономико-математические модели могут классифицироваться также по характеристике математических объектов, включенных в модель, другими словами. по типу математического аппарата, используемого в модели. По этому признаку могут быть выделены матричныемодели, модели линейного и нелинейногопрограммирования, корреляционно-регрессионные модели, модели теории массового обслуживания, модели сетевого планирования и управления, модели теории игр и т.д.
Наконец, по типу подхода к изучаемым социально-экономическим системам выделяют дескриптивные и нормативные модели. При дескриптивном (описательном) подходе получаются модели, предназначенные для описания и объяснения фактически наблюдаемых явлений или для прогноза этих явлений; в качестве примера дескриптивных моделей можно привести названные ранее балансовые и трендовые модели. При нормативном подходе интересуются не тем, каким образом устроена и развивается экономическая система, а как она должна быть устроена и как должна действовать в смысле определенных критериев. В частности, все оптимизационные модели относятся к типу нормативных; другим примером могут служить нормативные модели уровня жизни.
2.4. Теория корреляционного анализа.
В экономических исследованиях часто решают задачу выявления факторов, определяющих уровень и динамику экономического процесса. Такая задача чаще всего решается методами корреляционного, регрессионного, факторного и компонентного анализа.
Все многообразие факторов, которые воздействуют на изучаемый процесс, можно разделить на две группы: главные (определяющие уровень изучаемого процесса) и второстепенные. Последние часто имеют случайный характер, определяя специфические и индивидуальные особенности каждого объекта исследования.
Взаимодействие главных и второстепенных факторов и определяет колеблемость исследуемого процесса. В этом взаимодействии синтезируемая как необходимое, типическое, определяющее закономерность изучаемого явления, так и случайное, характеризующее отклонение от этой закономерности. Случайные отклонения неизбежно сопутствуют любому закономерному явлению.
для достоверного отображения объективно существующих в экономике процессов необходимо выявить существенные взаимосвязи и не только выявить, но и дать им количественную оценку. Этот подход требует вскрытия причинных зависимостей. Под причинной зависимостью понимается такая связь между процессами, когда изменение одного из них является следствием изменения другого.
Основными задачами корреляционного анализа являются оценка силы связи и проверка статистических гипотез о наличии и силе корреляционной связи.
Не все факторы, влияющие на экономические процессы, являются случайными величинами. Поэтому при анализе экономических Явлений обычно рассматриваются связи между случайными и неслучайными величинами. Такие связи называются регрессионными, а метод математической статистики, их изучающий, называется регрессионным анализом.
Методами факторного анализа можно подтвердить существующую гипотезу или сформулировать новую гипотезу на основе большого числа наблюдений. Факторный анализ надо рассматривать как статистический метод вне зависимости от области его приложения. В факторном анализе мы исходим из того, что несколько измеряемых параметров сильно коррелируют между собой. В этом случае эти характеристики процессов взаимно определяют друг друга; например, выработка предприятия и производительность труда, оцениваемая как выработка на одного работника. В связи с накоплением большого статистического материала при изучении сложных экономических явлений, например при анализе производственно-хозяйственной деятельности, при прогнозировании по многим параметрам, становится очень трудным, а зачастую и невозможным решить проблему на основе одних логических рассуждений. Факторный анализ позволяет: упорядочить данные, описать взаимосвязи, получить дополнительный материал для проверки интуитивных соображений руководителя или исследователя.
Использование возможностей современной вычислительной техники, оснащенной пакетами программ машинной обработки статистической информации на ЭВМ, делает практически осуществимым оперативное решение задач изучения взаимосвязи показателей коммерческой деятельности методами корреляционно-регрессионного, факторного и компонентного анализа.
При машинной обработке исходной информации на ЭВМ, оснащенных пакетами стандартных программ ведения анализов, вычисление параметров применяемых математических функций является быстро выполняемой счетной операцией. Результаты выдаются в виде соответствующих машинограмм (распечаток) ЭВМ.
Методика корреляционно-регрессионного анализа
Исследование начинается с построения матрицы парных коэффициентов корреляции. Анализ этой матрицы позволит получить начальное представление об исследуемых взаимозависимостях между показателями (теснота и направление связи). Оценить значимость можно как по самим значениям коэффициентов корреляции, так и по соответствующим значениям t-статистики.
Чтобы оценить дублирование информации необходимо построить матрицу частных коэффициентов корреляции порядка (L-2), где L-число исходных переменных, включая результативный признак.
Исследование парных и частных коэффициентов корреляции должно помочь в выборе регрессоров для выполнения следующего этапа. Здесь следует учитывать возможность появления мультиколлинеарности. Явные признаки этого - коэффициенты корреляции между потенциальными регрессорами, по модулю большие, чем 0,8.
После составления набора объясняющих показателей, которые могут быть включены в модель, исследование продолжается с помощью регрессионного анализа. Рекомендуется использовать пошаговый регрессионный анализ по схеме последовательного включения в уравнение наиболее информативных объясняющих признаков. По матрице R по строке, соответствующей результативному признаку, выбирается наиболее коррелируемый с y-ом регрессор и строится МНК - уравнение на него. Проверяется его значимость.
Далее возвращаемся в корреляционный анализ и рассчитываем матрицу частных коэффициентов корреляции при фиксировании включенного в уравнение признака. И в этой матрице по строке, соответствующей результативному признаку, выбирается наиболее коррелированный показатель. Этот регрессор и вводится в модель, проверяется значимость уравнения и отдельных коэффициентов. Процесс прекращается, если введен незначимый регрессор.
При проведении интерпретации оценивается не только содержательный смысл модели, но и информативность, например, с помощью множественного коэффициента корреляции (детерминации) этого окончательного уравнения по сравнению с аналогичным, построенным по полному набору исходных объясняющих показателей. Потери информации ( R2) могут быть достаточно большими и тогда целесообразно перейти к регрессии на главные компоненты и общие факторы.