Смекни!
smekni.com

Применение экономико-математического моделирования в прогнозировании издержек (стр. 6 из 9)

Статистическое моделирование связи методом
корреляционного и регрессионного анализа.

Задачи корреляционного анализа сводятся к измерению тесноты известной связи между варьирующими признаками, определению неизвестных причинных связей (причинный характер которых должен быть выяснен с помощью теоретического анализа) и оценки факторов, оказывающих наибольшее влияние на результативный признак.

Задачами регрессионного анализа являются выбор типа модели (формы связи), установление степени влияния независимых переменных на зависимую и определение расчётных значений зависимой переменной (функции регрессии).
Решение всех названных задач приводит к необходимости комплексного использования этих методов.

Корреляционный и регрессионный анализ. Исследование связей в условиях массового наблюдения и действия случайных факторов осуществляется, как правило, с помощью экономико-статистических моделей. В широком смысле модель – это аналог, условный образ (изображение, описание, схема, чертёж и т.п.) какого-либо объекта, процесса или события, приближенно воссоздающий «оригинал». Модель представляет собой логическое или математическое описание компонентов и функций, отображающих существенные свойства моделируемого объекта или процесса, даёт возможность установить основные закономерности изменения оригинала. В модели оперируют показателями, исчисленными для качественно однородных массовых явлений (совокупностей). Выражение и модели в виде функциональных уравнений используют для расчёта средних значений моделируемого показателя по набору заданных величин и для выявления степени влияния на него отдельных факторов.

По количеству включаемых факторов модели могут быть однофакторными и многофакторными (два и более факторов). В зависимости от познавательной цели статистические модели подразделяются на структурные, динамические и модели связи.

Двухмерная линейная модель корреляционного и регрессионного анализа (однофакторный линейный корреляционный и регрессионный анализ). Наиболее разработанной в теории статистики является методология так называемой парной корреляции, рассматривающая влияние вариации факторного анализа х на результативный признак у и представляющая собой однофакторный корреляционный и регрессионный анализ. Овладение теорией и практикой построения и анализа двухмерной модели корреляционного и регрессионного анализа представляет собой исходную основу для изучения многофакторных стохастических связей.

Важнейшим этапом построения регрессионной модели (уравнения регрессии) является установление в анализе исходной информации математической функции. Сложность заключается в том, что из множества функций необходимо найти такую, которая лучше других выражает реально существующие связи между анализируемыми признаками. Выбор типов функции может опираться на теоретические знания об изучаемом явлении, опят предыдущих аналогичных исследований, или осуществляться эмпирически – перебором и оценкой функций разных типов и т.п.

При изучении связи экономических показателей производства (деятельности) используют различного вида уравнения прямолинейной и криволинейной связи. Внимание к линейным связям объясняется ограниченной вариацией переменных и тем, что в большинстве случаев нелинейные формы связи для выполнения расчётов преобразуют (путём логарифмирования или замены переменных) в линейную форму. Уравнение однофакторной (парной) линейной корреляционной связи имеет вид:


y = a 0 + a 1 x ,


где y - теоретические значения результативного признака, полученные по уравнению регрессии;

a 0, a 1- коэффициенты (параметры) уравнения регрессии.

Поскольку a 0 является средним значением у в точке х=0 , экономическая интерпретация часто затруднена или вообще невозможна.Коэффициент парной линейной регрессии a 1 имеет смысл показателя силы связи между вариацией факторного признака х и вариацией результативного признака у. Вышеприведенное уравнение показывает среднее значение изменения результативного признака у при изменении факторного признака х на одну единицу его измерения, то есть вариацию у , приходящуюся на единицу вариации х. Знак a1 указывает направление этого изменения.

Понятие корреляции и регрессии.

В экономике различают два вида зависимости между показателями- функциональную и корреляционную. Функциональная зависимость проявляется определенно и точно в каждом конкретном случае, в каждом наблюдении.

В отличии от функциональной корреляции зависимость проявляется приблизительно и лишь в массе наблюдений. Две случайные величины называются корреляционно связанными, если математическое ожидание одной из них меняется в зависимости от изменения другой.

Корреляционный анализ позволяет количественно оценить связи между большим числом взаимодействующих факторов.

Корреляционный анализ-это один из методов математической статистики, широко применяемый в научных исследованиях, инженерных и экономических расчетах и многих других областях.

Задачами корреляционного анализа экономической деятельности предприятия, его подразделений является выявление факторов, влияющих на результаты производства, количественное измерение подразумеваемой связи в виде уравнений регрессии, оценка вклада каждого из факторов в изменение результата.

При проведении корреляционного анализа необходимо выполнить ряд этапов:

1. Определить показатели результатов производства и набор факторов на них влияющих.

2. Собрать статистические данные по этим показателям.

3. Выбрать функции для построения уравнения регрессии.

4. Оценить качественные характеристики построенных уравнений.

5. Провести экономический анализ показателей, вытекающих из полученных расчетов.

Регрессионным анализом называют систему методов оценки параметров регрессии - коэффициентов регрессии на основе имеющихся наблюдений x и y. Регрессионный анализ является как бы частью корреляционного анализа.

Важным этапом анализа является постановка задачи регрессионного анализа. На этом этапе определяются показатели, включаемые в уравнение регрессии, форма взаимосвязи, требуемые статистические данные для проведения расчетов.

Виды уравнений регрессии.

При исследовании корреляционной зависимости прежде всего должно быть построено уравнение регрессии.

Уравнение регрессии - это модель, которая в численной форме выражает зависимость показателя результатов деятельности от влияющих на нее факторов.

Простейший случай представляет собой парная корреляция (простая линейная регрессия), где рассматривается зависимость между двумя показателями: показателем результатов (y) и одним фактором (x), от которого зависит этот показатель. Такие модели называются однофакторными. Форма зависимости может быть линейной и нелинейной. Нелинейность может проявляться как относительно факторов, так и входящих в функцию коэффициентов. В экономических исследованиях наиболее часто встречаются шесть следующих формул:

1. y=a0+a1*x – линейная.

2. y= a0+a1/x – гиперболическая.

3. y= a0+a1*x+a2*x^2 –квадратнаяилиполином y=a0+a1*x+a2*x^2+…+an*x^n.

4. y= a0*x^a1 – степенная.

5. y= a0*a1^x – показательная.

6. y= e^a1*x – экспоненциальная

Исходными материалами для составления уравнения регрессии являются значения показателей x и y по наблюдениям, т.е. имеется некоторая таблица, в которой фактическим значением x соответствует фактическое значение y, другими словами задана табличная функция.

Графический способ предполагает построение корреляционного поля по осям абсцисс и ординат откладывается фактические значения x и y по каждому наблюдению. В результате получим множество точек, по которым ещё нельзя судить о характере функции взаимосвязи. Разделим диапазон значений x на равные интервалы и в каждом из этих интервалов среднему значению x точек интервала поставим в соответствие среднее значение y. Таким образом, в каждом интервале вместе всех попавших в неё точек, получаем одну. Соединим средние величины на каждом интервале и выявим эмпирическую линию регрессии, по которой уже можно судить о том, как с изменением x будет меняться y.

Если значительно увеличить число наблюдений и уменьшить величину интервала, то эмпирическая линия регрессии будет приближаться к теоретической линии регрессии, которая и характеризует сложившуюся взаимосвязь между исследуемыми показателями. Уравнение теоретической линии регрессии может быть чрезвычайно сложным, поэтому выбирают одну из известных функций, график которой приближается к теоретической линии регрессии.

Статистические характеристики

Следующий шаг в регрессионном анализе – это решение вопроса о надёжности оценок, полученных из регрессионного анализа. Для этого рассчитывается ряд статистических характеристик, которые можно разделить на две группы:

1) Характеристики качества исходной информации;

2) Характеристики качества уравнения регрессии.

К первой группе относятся коэффициенты парной корреляции, средние квадратические отклонения, и коэффициенты вариации.

Из курса математической статистики известно, что лучшей характеристикой ряда наблюдений считается среднеарифметическое. Для характеристики степени отклонения индивидуальных значений от среднего используют дисперсию, а квадратный корень из дисперсии называют среднеквадратическим отклонением. С помощью уравнения регрессии найдена количественная связь между зависимой и независимой переменной. Насколько оценка по уравнению надёжнее оценок с помощью средней? На этот вопрос можно ответить коэффициентом детерминации R2. Он показывает на сколько сократилась сумма квадратов отклонений при переходе от средней арифметической к оценке по уравнению регрессии. Коэффициент детерминации обычно рассчитывается программой регрессионного анализа и равен: