Смекни!
smekni.com

Анализ производства и реализация товаров предприятия (стр. 5 из 9)

Рисунок 3.2.3.4 – Графическое отображение выравнивания по параболе

Рассмотрим выравнивание с помощью логарифмической функции. Для этого заполним таблицу 3 приложения В. На основании формул (1.2.3.7а, б) вычислим значения параметров:

;
.

Используя формулу (1.2.3.6) получаем уравнение логарифмической функции, на основании которой заполняется таблица:

Для нахождения

необходимо пропотенцировать полученные значения функции. Полученные данные отобразим графически на рисунке 3.2.3.5.

Рисунок 3.2.3.5 – Графическое отображение выравнивания с помощью логарифмической функции

Для выбора оптимальной функции из рассчитанных, воспользуемся формулой ошибки аппроксимации (1.2.3.8):

м2;

м2;

м2.

Полученные значения означают отклонение фактических уровней ряда, от выравненных (расчетных). Очевидно, что самым оптимальным является выравнивание по параболе, т.к. оно имеет минимальное отклонение по сравнению с остальными функциями.

На основании проведенного аналитического выравнивания различными методами и функциями можно сделать вывод об общей динамике в производстве продукции по дням. Выравнивание 3 методами показало, что наибольший выпуск наблюдается в середине месяца и последующим спадом к концу месяца. Т.к. оптимальной является параболическая функция из-за наименьшей ошибки аппроксимации, то средний выпуск ежедневно составляет 5959,6±4523,7м2.

3.2.4 Показатели сезонности

На основании данных таблицы 1 приложения Б построим сезонную волну. Т.к. ряд не содержит ярко выраженной тенденции в развитии, то индексы сезонности вычислим по формуле (1.2.4.2):

,

где

вычислим по формуле (1.2.2.1а), где n=6. Полученные данные занесем в таблицу 3.2.4.1. и на ее основе отобразим графически сезонную волну на рисунке 3.2.4.1.

Таблица 3.2.4.1 – Расчетные данные для построения сезонной волны

День Выпуск продукции, y
Is,%
1 22274,5 3 712,4 93,2
2 31412,6 5 235,4 131,4
3 24230,0 4 038,3 101,4
4 24510,0 4 085,0 102,5
5 36323,0 6 053,8 152,0
6 28910,0 4 818,3 120,9
7 27240,5 4 540,1 114,0
8 14842,5 2 473,8 62,1
9 29850,5 4 975,1 124,9
10 20103,5 3 350,6 84,1
11 27593,6 4 598,9 115,4
12 31389,0 5 231,5 131,3
13 26680,0 4 446,7 111,6
14 24575,0 4 095,8 102,8
15 23477,0 3 912,8 98,2
16 23259,0 3 876,5 97,3
17 22425,5 3 737,6 93,8
18 22604,0 3 767,3 94,6
19 32810,0 5 468,3 137,3
20 25140,0 4 190,0 105,2
21 24690,0 4 115,0 103,3
22 21175,0 3 529,2 88,6
23 20985,0 3 497,5 87,8
24 18375,0 3 062,5 76,9
25 15795,0 2 632,5 66,1
26 21262,4 3 543,7 88,9
27 19242,5 3 207,1 80,5
28 20405,0 3 400,8 85,4
29 19698,0 3 283,0 82,4
30 16173,0 3 234,6 81,2
31 3655,0 1 827,5 45,9
Итого 721106,1 3 984,0 100,0

В результате проведенного исследования сезонных колебаний можно сделать вывод, минимальное значение на 45,9% сезонная волна принимает 31 числа, это очевидно, т.к. за полгода 31 число встречается лишь в марте и мае. Если не брать в расчет это значение, то за минимальное значение можно принять 62,1% 8го числа и 66,1% 25го. В течение всего периода прослеживаются резкие скачки, особенно в начале месяца. Наибольшее значение сезонная волна принимает на уровне 152,0% 5го числа. Во второй половине сезонная волна имеет тенденцию к постоянному снижению, и после 137,3% 19 числа значения сезонной волны не поднимаются выше 100,0%.

3.3 Показатели вариации

Произведем расчет показателей вариации на основании двух таблиц. Сначала рассчитаем показатели вариации на основе таблицы 2 приложения А для выпуска продукции по каждому наименованию полотна[4]. Заполним таблицу 1 приложения Г заранее проведя ранжировку ряда. Среднее значение рассчитаем по формуле (1.2.2.1а):

м2.

Рассчитаем размах вариации по формуле (1.3.1):

м2.

Среднее линейное отклонение рассчитаем по формуле (1.3.2а):

м2.

Дисперсию рассчитаем по формуле (1.3.3а):

Среднее квадратическое отклонение рассчитаем по формуле (1.3.4):


м2.

Рассчитаем коэффициенты вариации по формулам (1.3.5а, б):

;
.

Коэффициент осцилляции рассчитаем по формуле (1.3.11):

.

Для расчета асимметрии вычислим момент третьего порядка по формуле (1.3.13а):

.

Тогда асимметрия по формуле (1.3.12)

, а средняя квадратичная ошибка рассчитанная по формуле (1.3.14) равна:

.

Для расчета эксцесса вычислим момент четвертого порядка по формуле (1.3.16а):

.

Тогда эксцесс по формуле (1.3.15)

, средняя квадратичная ошибка рассчитанная по формуле (1.3.14) равна:

.

Т.к. мода – значение признака, наиболее часто встречающееся в изучаемых явлениях, то модой будет являться ИП–215–350, т.к. оно наиболее часто выпускалось, т.е. в больших количествах. Медианой же будет являться значение, находящееся между 10 и 11 полотном в ранжированном ряду, т.е.:

м2.

На основании расчетов показателей вариации можно сделать вывод, что средний выпуск каждого из видов полотна равен 36055,3м2. Половина полотен выпускается в объеме большем 15800,0м2, а вторая половина в меньшем объеме. Наибольшее количество, а именно 133043,0м2 производят полотна ИП-215-350. Наименьший объем за полгода выпустили полотна ИП-170-600 в количестве 204,0м2 и ИП-170-450 в объеме 340,м2. Возможно, это связано с индивидуальными заказами. Разница между максимальным и минимальным значением объема производства конкретного вида продукции составляет 132839,0м2, что является значительным показателем. Средняя величина колеблемости объема производства продукции одного наименования полотна составляет по линейному отклонению 33621,3м2, а по среднему квадратному отклонению 38558,8м2, т.е. выпуск в среднем каждого полотна составляет 36055,3 ± 38558,8м2. Разница между крайними значениями объема производства больше среднего значения в 3,6 раза. Относительное линейное отклонение 93,2% характеризуют неоднородность, что подтверждает коэффициент вариации, который равен 106,9%, что больше 33%. Асимметрия и эксцесс являются несущественными, т.к. (|As|/σas=1,8)<3, а (|Ex|/σex=0,3)<3. Распределение плосковершинно (Ех=-0,27)<0, а асимметрия правосторонняя (As=0,93)>0.

Наибольший интерес представляют расчеты показателей вариации для интервального ряда. Возьмем данные ранее проведенной группировки из таблицы 3.1З.1. Заполним таблицу 2 приложения Г.

Среднее значение рассчитаем по формуле (1.2.2.1б):

м2.

Рассчитаем размах вариации по формуле (1.3.1):

м2.

Среднее линейное отклонение рассчитаем по формуле (1.3.2б):

м2.

Дисперсию рассчитаем по формуле (1.3.3б):

Среднее квадратическое отклонение рассчитаем по формуле (1.3.4):

м2.

Рассчитаем коэффициенты вариации по формулам (1.3.5а, б):


;
.