Смекни!
smekni.com

Аффинные преобразования на плоскости (стр. 1 из 2)

ПГУ им. Т.Г.Шевченко

Курсовая работа.

Тема: Аффинные преобразования на плоскости.

Выполнила студентка 110 гр.
физико-математического ф-та
Пельтек Е.С.

Руководитель: Малютина Н.Н.

Тирасполь,2008г.

Оглавление:

1.

Введение.

AФФИННЫЕ ПРЕОБРАЗОВАНИЯ НА ПЛОСКОСТИ.

1.Определение аффинных преобразований.

Пусть в плоскости задана произвольная аффинная система координат Ое1е2. Если, наряду с этой («старой», или «исход­ной») системой координат, задать также совершенно произвольную «новую» аффинную координатную систему Ое1е2.,то определится преобразование, состоящее в том, что каждой точке М плоскости ставится в соот­ветствие точка М', которая в новой координатной системе имеет те самые координаты, какие точка М имела в старой системе. Преобразование, которое может быть задано этим способом, называется аффинным.

Замечание 1. Если исходный репер считать раз навсегда данным, то возможные аффинные преобразования плоскости взаимно однозначно соответствуют различным реперам Ое1е2., которые можно выбрать на плоскости (соответ­ственно в пространстве). Тем из этих реперов, которые одноименны с исходным, соответствуют аффинные преобразования, называемые собственными; реперы, не одноименные с исходным репером, опреде­ляют несобственные аффинные преобразования.

Замечание 2. Совершенно так же, как мы определяли аффин­ное преобразование плоскости (т. е. аффинное взаимно однозначное отображение плоскости на себя), мы можем определить взаимнооднозначное аффинное отображение одной плоскости π на другую плоскость π’: для того чтобы задать такое отображение, надо взять два репера: репер Ое1е2 в плоскости π и репер Ое1е2 в плоскости π '.

Определяемое этими данными отображение — аффинное отображе­ние плоскости π на плоскость π '- состоит в том, что каждой точке М плоскости π ставится в соответствие та точка М' плоскости π ', которая относительно репера Ое1е2 имеет те же самые координаты, которые точки М имели относительно репера Ое1е2.

2.Преобразование векторов при аффинном преобразовании плоскости и пространства. Основные свойства аффинных преобразований.

Возьмем на плоскости какой-нибудь вектор М0М1. При аффинном преобразовании точки М0, М1 переходят соответственно в точки М0', М1′, имеющие относительно нового репера те же координаты, которые точки М0, М1 имели относительно старого. Так как координаты вектора получаются вычитанием координат его начальной точки из координат его конца, то координаты вектора М0М1 относительно нового репера те же, что и координаты вектора М0М1 относительно старого репера. Итак:

1.При аффинном преоб­разовании вектору u= М0М1 ставится в соответствие век­тор и' = М'0М1′, имеющий от­носительно нового репера те же координаты, которые вектор uимел относитель­но старого.

Отсюда сразу следует, что при аффинном преобра­зовании равным векторам соответствуют равные, так что:

2. Аффинное преобразование плоскости порождает взаимно однозначное отображение на себя (преобразование) много­образия V всех свободных векторов плоскости.

Это преобразование обладает следующим свойством линейности: если при данном преобразовании векторам u, vсоответствуют векторы u', v', то вектору и u+vбудет соответствовать вектор u'+v', а век­тору λu- вектор λu'

Из свойства линейности вытекает, далее:

3.Еcли при данном аффинном преобразовании векторам u1,…,u′nсоответствуют векторы u′1, . . ., u'n, то всякой линейной комбинации λ1u12u2+…+λnun векторов u1,…,unсоответствует линейная комбинация

λ1u′12u′2+…+λnu′n

векторов u'1, ... , u'n (с теми же коэффициентами λ1, λ2, ... ,λn).

Так как при аффинном преобразовании нулевому вектору, очевидно, соответствует нулевой, то из доказанного следует:

4. При аффинном преобразовании линейная зависимость векторов сохраняется (и, значит, всякие два коллинеарных вектора переходят в коллинеарные)

5. Обратное преобразование к аффинному преобразованию есть аффинное преобразование.

В самом деле, если данное аффинное преобразование Аплоскости задается переходом от репера Ое1е2 к реперу О′е1′е2′, то аффинное преобразование, задаваемое переходом от репера О′е1′е2′, к реперу Ое1е2, есть как легко видеть преобразование, обратное данному преобразованию А.

Мы видели, что при аффинном преобразовании линейная зависи­мость векторов сохраняется. Сохраняется и линейная независимость векторов:

6. При аффинном преобразовании А всякая линейно независимая

система векторов u1, u2,… переходит в линейно независимую – в противном случае при аффинном преобразовании А-1обратном к А, линейно зависимая система u1′, u2′,… перешла бы в линейно неза­висимую, что, как мы знаем, невозможно.

Так как репер есть система линейно независимых векторов приложенных к данной точке О, то при аффинном преобразовании всякий репер переходит в репер. Более того, имеет место предложение

7. При аффинном отображении (заданном переходом от репера Iреперу I′) всякий репер II переходит в репер II' и всякая точка М (всякий вектор u) переходит в точку М' (в вектор u') с теми же координатами относительно репера II', какие точка М и вектор uимели относительно репера II.

Доказательство. Пусть II есть репер Оε1ε2,а II' — репер О′ε1′ε2 ′.Докажем сначала утверждение, касающееся векторов. Если вектор uимеет относительно репераОε1ε2 координаты ξ,η,то u=ξ ε1′+η ε2 ′. Но тогда образ вектораи есть, по свойству 3, вектор

u′= ξ ε1′+η ε2 ′,

имеющийкоординаты ξ, η относительно репера О′ε1′ε2 ′. Пусть точка М имеет координаты ξ, η относительно репера Оε1ε2.Тогда oM= ξ ε1+η ε2, так что, по предыдущему, относительно репера О′ε1′ε2 ′ вектор о'М', а значит, и точка М' имеют координаты ξ, η. Утвер­ждение доказано.

Доказанное утверждение является существенным: из него сле­дует, что, задав аффинное преобразование переходом от какого-нибудь репера Oe1e2 к реперу О′ε1′ε2 ′, мы можем задать его, взяв в качестве исходного любой репер Оε1ε2 и указав тот репер О′ε1′ε2 ′, в который он должен перейти.

В качестве приложения только что сделанного замечания дока­жем, что произведение двух аффинных преобразований А1 и А2есть аффинное преобразование.

В самом деле, пусть аффинное преобразование А1 задается переходом от репера I к реперу II. Аффинное преобразование А2 мы можем, по только что доказанному, задать переходом от репера II к какому-то реперу III. Тогда аффинное преобразование, зада­ваемое переходом от репера I к реперу III, есть, очевидно, произ­ведение А2А1преобразования А1 на преобразование А2.

Три точки Ml М2 М3тогда и только тогда, когда коллинеарны (т. е.

лежат на одной прямой), когда векторы М1М2 и М2М3 коллинеарны. А так как коллинеарность векторов при аффинном преобразовании сохраняется, то сохраняется и коллинеарность точек. Отсюда вы­текает:

8. При аффинном отображении прямая переходит в прямую.

Мы сейчас дадим второе доказательство этого факта.

Пусть дано аффинное отображение. Оно состоит в том, что каждая точка М с координатами х, у (в координатной системе Oe1e2) переходит в точку М', имеющую те же координаты во второй системе О′е1′е2′. Отсюда следует:

9. При данном аффинном отображении (определенном переходом от репера Ое1е2 к реперу О′е1′е2′) множество всех точек, координаты которых (в координатной системе Ое1е2) удовлетворяют некоторому уравнению, переходит в множество точек, координаты которых в системе О′е1′е2′ удовлетворяют тому же уравнению.

В частности, прямая с уравнением

Ах + Ву + С = 0

(в системе Ое1е2 перейдет в прямую, имеющую то же уравнение, но только в системе координат О'е'1е'2.

Теорема 1. При аффинном преобразовании плоскости прямые переходят в прямые, плоскости пере­ходят в плоскости.

При этом сохраняется параллельность.

В самом деле, если две прямые параллельны, то их уравнения относительно репера Ое1е2 удовлетворяют известным условиям параллельности; но образы этих прямых имеют те же уравнения относительно репера О'е'1е'2 и, значит, удовлетворяют тем же условиям параллельности.

Теорема 2. При аффинном преобразовании плоскости, переводящем прямую d в прямую d′, отрезок М0М1 прямой d переходит в отрезок М'0М1′ прямой d', а точка М прямой d, делящая отрезок М0М1 в данном отношении λ переходит в точку М' прямой d', делящую отрезок М'0М1′ в том же отношении λ.

Доказательство. Так как при положительном λ мы получим точки, лежащие внутри отрезка М0М1(соответственноМ0′М1′), а при отрицательном – вне отрезка, то из второго теоремы 2 следует первое. Доказываем второе утверждение теоремы 2. Пусть в системе координат Ое1е2 имеем М0=(x0,y0),