Уравнение линии на плоскости
Основные вопросы лекции: уравнения линии на плоскости; различные формы уравнения прямой на плоскости; угол между прямыми; условия параллельности и перпендикулярности прямых; расстояние от точки до прямой; кривые второго порядка: окружность, эллипс, гипербола, парабола, их уравнения и геометрические свойства; уравнения плоскости и прямой в пространстве.
Уравнение вида
Если выразить в этом уравнении
Две прямые на плоскости называются параллельными, если они не пересекаются.
Прямые называются перпендикулярными, если они пересекаются под прямым углом.
Пусть заданы две прямые
Чтобы найти точку пересечения прямых (если они пересекаются) необходимо решить систему с этими уравнениями. Решение этой системы и будет точкой пересечения прямых. Найдем условия взаимного расположения двух прямых.
Так как
Отсюда можно получить, что при
Расстояние от точки
Нормальное уравнение окружности:
Эллипсом называется геометрическое место точек на плоскости, сумма расстояний от которых до двух заданных точек, называемых фокусами, есть величина постоянная.
Каноническое уравнение эллипса имеет вид:
где
Гиперболой называется геометрическое место точек на плоскости, модуль разности расстояний от которых до двух заданных точек, называемых фокусами, есть величина постоянная.
Каноническое уравнение гиперболы имеет вид:
где
Прямые
Из уравнения
Параболой называется геометрическое место точек на плоскости, от каждой из которых расстояние до данной точки, называемой фокусом, равно расстоянию до данной прямой называемой директрисой, есть величина постоянная.
Каноническое уравнение параболы
Прямая
Понятие функциональной зависимости
Основные вопросы лекции: множества; основные операции над множествами; определение функции, ее область существования, способы задания; основные элементарные функции, их свойства и графики; числовые последовательности и их пределы; предел функции в точке и на бесконечности; бесконечно малые и бесконечно большие величины и их свойства; основные теоремы о пределах; замечательные пределы; непрерывность функции в точке и на интервале; свойства непрерывных функций.
Если каждому элементу
Множество
Существуют следующие способы задания функции
1. Аналитический способ, если функция задана формулой вида
2. Табличный способ состоит в том, что функция задается таблицей, содержащей значения аргумента
3. Графический способ состоит в изображении графика функции – множества точек
4. Словесный способ, если функция описывается правилом ее составления.
Основные свойства функции
1. Четность и нечетность. Функция называется четной, если для всех значений из области определения