Смекни!
smekni.com

Решение уравнений с параметрами (стр. 1 из 2)

Городская открытая научно – практическая конференция

Тема: Решение уравнений с параметрами, связанных со свойствами показательной, логарифмической и тригонометрической функциями Автор: Научный руководитель: 2007 г.
Содержание

1. Введение

2. Решение уравнений с параметрами

3. Решение уравнений с параметрами, связанных со свойствами показательной, логарифмической и тригонометрической функциями

4. Заключение

5. Используемая литература

Введение

Актуальность данной темы определяется необходимостью уметь решать такие уравнения с параметрами при сдачи Единого Государственного экзамена и на вступительных экзаменах в высшие учебные заведения.

Цель данной работы рассказать о решении уравнений с параметрами, связанных со свойствами показательной, логарифмической и тригонометрической функциями.

Для достижения поставленной цели необходимо решить следующие задачи:

1) дать определения понятиям уравнение с параметрами;

2) показать принцип решения данных уравнений на общих случаях;

3) показать решение уравнений с параметрами, связанных со свойствами показательной, логарифмической и тригонометрической функциями.

Для выполнения поставленной цели были использованы следующие методы: использование литературы разного типа, работа в группах на уроках алгебры и занятиях элективного курса по математике, участие проектной группы в городской конференции по данной теме в 2006 году.

Объектом исследовательской работы было решение уравнений с параметрами, связанных со свойствами выше представленных функций.

Структура данной работы включает в себя теорию, практическую часть, заключение, библиографический список.


Решение уравнений с параметрами

Задачи с параметрами играют важную роль в формировании логического мышления и математической культуры у школьников, но их решение вызывает у них значительные затруднения. Это связано с тем, что каждое уравнение с параметрами представляет собой целый класс обычных уравнений, для каждого из которых должно быть получено решение. Такие задачи предлагаются на едином государственном экзамене и на вступительных экзаменах в вузы.

Большинство пособий адресовано абитуриентам, однако начинать знакомиться с подобными задачами нужно намного раньше – параллельно с соответствующими разделами школьной программы по математике.

Если в уравнении некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами, то они называются параметрами, а уравнение параметрическим.

Естественно, такой небольшой класс задач многим не позволяет усвоить главное: параметр, будучи фиксированным, но неизвестным числом, имеет как бы двойственную природу. Во-первых, предполагаемая известность позволяет «общаться» с параметром как с числом, а во-вторых, - степень свободы общения ограничивается его неизвестностью. Так, деление на выражение, содержащее параметр, извлечение корня четной степени из подобных выражений требуют предварительных исследований. Как правило, результаты этих исследований влияют и на решение, и на ответ.

Основное, что нужно усвоить при первом знакомстве с параметром, - это необходимость осторожного, даже, если хотите, деликатного обращения с фиксированным, но неизвестным числом. Этому, по нашему мнению, во многом будут способствовать наши примеры.

Необходимость аккуратного обращения с параметром хорошо видна на тех примерах, где замена параметра числом делает задачу банальной. К таким задачам, например, относятся: сравнить два числа, решить линейное или квадратное уравнение, неравенство и т.д.

Обычно в уравнение буквами обозначают неизвестные.

Решить уравнение - значит:

найти множество значений неизвестных, удовлетворяющих этому уравнению. Иногда уравнения, кроме букв, обозначающих неизвестное(X, Y,Z), содержат другие буквы, называемые параметрами(a, b, c). Тогда мы имеем дело не с одним, а с бесконечным множеством уравнений.

При одних значениях параметров уравнение не имеет корней, при других – имеет только один корень, при третьих – два корня.

При решении таких уравнений надо:

1) найти множество всех доступных значений параметров;

2) перенести все члены, содержащие неизвестное, в левую часть уравнения, а все члены, не содержащие неизвестного в правую;

3) привести подобные слагаемые;

4) решать уравнение ax = b.

Возможно три случая.

1. а

0, b – любое действительное число. Уравнение имеет единственное решение х =
.

2. а = 0, b = 0. Уравнение принимает вид: 0х = 0, решениями являются все х

R.

3. а = 0, b0. Уравнение 0х = b

решений не имеет.

Сделаем одно замечание. Существенным этапом решения уравнений с параметрами является запись ответа. Особенно это относится к тем примерам, где решение как бы «ветвится» в зависимости от значений параметра. В подобных случаях составление ответа – это сбор ранее полученных результатов. И здесь очень важно не забыть отразить в ответе все этапы решения.

В только что разобранном примере запись ответа практически повторяет решение. Тем не менее, я считаю целесообразным привести ответ.

Ответ:

х =

при а
0, b – любое действительное число;

х – любое число при а = 0, b = 0;

решений нет при а = 0, b ≠ 0.

Решение уравнений с параметрами, связанных со свойствами показательной, тригонометрической и логарифмической функциями

1. Найдем значения параметра n, при которых уравнение 15·10 х – 20 = n – n · 10х + 1 не имеет корней?

Решение: преобразуем заданное уравнение: 15·10 х – 20 = n – n · 10х + 1; 15·10 х + n· 10х + 1 = n + 20; 10 х ·(15 + 10n) = n + 20; 10 х =

.

Уравнение не будет иметь решений при

≤ 0, поскольку 10 х всегда положительно.

Решая указанное неравенство методом интервалов, имеем:

≤ 0; (n + 20)·(15 + 10n) ≤ 0; - 20 ≤ n ≤ - 1,5.

Ответ:

.

2. Найдем все значения параметра а, при которых уравнение lg2 (1 + х2) + (3а – 2)· lg(1 + х2) + а2 = 0 не имеет решений.

Решение: обозначим lg(1 + х2) = z, z > 0, тогда исходное уравнение примет вид: z2 + (3а – 2) · z + а2 = 0. Это уравнение – квадратное с дискриминантом, равным (3а – 2)2 – 4а2 = 5а2 – 12а + 4. При дискриминанте меньше 0, то есть при 5а2 – 12а + 4 < 0 выполняется при 0,4 < а <2.

Ответ: (0,4; 2).

3. Найдем наибольшее целое значение параметра а, при котором уравнение cos2x + asinx = 2a – 7 имеет решение.

Решение: преобразуем заданное уравнение:

cos2x + asinx = 2a – 7; 1 – 2sin2х – asinx = 2a – 7; sin2х -

asinx + a – 4 = 0;

(sinх – 2) ·

= 0.

Решение уравнения (sinх – 2) ·

= 0 дает:

(sinх – 2) = 0; х принадлежит пустому множеству.

sinх -

= 0; х = (-1)narcsin
+ πn, n
Z при
≤ 1. Неравенство
≤ 1 имеет решение 2 ≤ а ≤ 6, откуда следует, что наибольшее целое значение параметра а равно 6.

Ответ: 6.

4. Указать наибольшее целое значение параметра а, при котором корни уравнения 4х2 - 2х + а = 0 принадлежит интервалу (- 1; 1).

Решение: корни заданного уравнения равны: х1 =

(1+
)

х2 =

, при этом а
.

По условию -1 <

(1+
) < 1
<
< 3,

- 1 <

< 1
>
> - 3.

Решением, удовлетворяющим указанным двойным неравенствам, будет решение двойного неравенства: - 3 <

< 3.

Неравенство - 3 <

выполняется при всех а ≤
, неравенство
< 3 – при - 2 < а
. Таким образом, допустимые значения параметра а лежат в интервале (-2;
.