Поддерживать активность и предупреждать утомление детей позволяет смена характера их деятельности, дети слушают педагога, следя за его действиями, сами совершают какие-либо действия, участвуют в общей игре Им предлагают не более 2— 3 однородных заданий. На одном занятии дают от 2 до 4 разных заданий. Каждое повторяется не болге 2—3 раз.Когда дети знакомятся с новым материалом, продолжительность занятия может быть 10—12 минут, так как усвоение нового требует от малыша значительного напряжения; занятия, посвященные повторным упражнениям, можно продлить до 15 мин Педагог следит за поведением детей на занятии и гри появлении у них признаков утомления (частое отвлечение, ошибки в ответах на вопросы, повышенная возбудимость и пр.) прекращает занятие. Следить за состоянием детей во время занятии очень ражно, так как утомление может привести к потере интереса четей к занятиям.
39. Анализ программных задач по математике в средней группе.
Количество и счет. Дать детям представление о том, что множество (группа) может состоять из разных по качеству, предметов (разного цвета, формы, размера); учить сравнивать эти предметы, определяя их равенство или неравенство на основе составления пар (не прибегая к счету). Вводить в речь детей выражения: «Здесь много кружков, одни — красного цвета, а другие — синего; красных кружков больше, чем синих, а синих меньше, чем красных». Учить считать до 5, пользуясь правильными приемами счета: называть числительные по порядку; соотносить каждое числительное только с одним предметом пересчитываемой группы; относить последнее числительное ко всем пересчитанным предметам, например: «Один, два, три —всего три кружка». Учить сравнивать две группы предметов, именуемые числами 1-2, 2-2, 2-3, 3-3, 3-4, 4-4, 4-5, 5-5. Формировать представление о равенстве (неравенстве) групп предметов на основе счета: «Здесь один, два зайчика, а здесь одна, две, три елочки. Елочек больше, чем зайчиков; 3 больше, чем 2, а 2 меньше, чем 3».). Учить уравнивать неравные группы двумя способами, добавляя к меньшей группе один (недостающий) предмет или убирая из большей группы один (лишний) предмет («К 2 зайчикам добавили 1 зайчика, стало 3 зайчика и елочек тоже 3. Елочек и зайчиков поровну — 3 и 3» или: «Елочек больше (3), а зайчиков меньше (2). Убрали 1 елочку, их стало тоже 2. Елочек и зайчиков стало поровну 2 и 2»).Учить отсчитывать предметы из большего количества; приносить, выкладывать определенное количество предметов по образцу или заданному числу (отсчитай 4 петушка, принеси 3 зайчика). Учить считать предметы на ощупь, на слух, считать движения. Учить на основе счета устанавливать равенство (неравенство) групп предметов в ситуациях, когда предметы в группах расположены на разном расстоянии друг от друга, когда они отличаются по размерам.
Величина. Совершенствовать умение сравнивать два предмета по величине (длине, ширине, высоте) путем непосредственного наложения и приложения их друг к другу. Учить соизмерять предметы по двум признакам величины (красная лента длиннее и шире зеленой, желтый шарфик короче и уже синего и т. д.). Учить детей устанавливать размерные отношения между 3-5 предметами разной длины, ширины, высоты: располагать их в определенной последовательности — в порядке убывания или нарастания величины; обозначать словом размерные отношения предметов в ряду: «Эта башенка — высокая, эта — пониже, эта — еще ниже, а эта — самая низкая».
Форма. Развивать представление детей о геометрических фигурах: шаре, кубе, цилиндре, круге, квадрате, треугольнике. Учить выделять особые признаки фигур с помощью осязательно-двигательного и зрительного анализа (наличие или отсутствие углов, устойчивость, подвижность и др.). Познакомить детей с прямоугольником, сравнивая его с кругом, квадратом, треугольником. Учить различать и называть прямоугольник. Формировать представление о том, что фигуры могут быть разных размеров: большой — маленький куб (шар, цилиндр, круг, квадрат, треугольник, прямоугольник). Учить соотносить форму предметов с геометрическими фигурами: тарелка — круг, платок — квадрат, мяч — шар, стакан — цилиндр, окно, дверь — прямоугольник и др.
Ориентировка в пространстве. Совершенствовать умение определять направление от себя, двигаться в заданном направлении (вперед — назад, направо — налево, вверх — вниз); обозначать словами положение предмета по отношению к себе («передо мной стол», «справа от меня дверь», «слева — окно», «сзади на полках — игрушки»). Познакомить с пространственными отношениями: далеко — близко (дом — близко, а березка — далеко).
Ориентировка во времени. Расширять представления детей о частях суток, их последовательности (утро, день, вечер, ночь). Объяснить значение слов «вчера», «сегодня», «завтра». Раскрыть на конкретных примерах понятия «быстро — медленно» (поезд едет быстро, а черепаха ползет медленно).
К концу года дети могут
• Различать, из каких частей составлена группа предметов, называть их характерные особенности (цвет, форму, величину).
• Считать до 5 (количественный счет), отвечать на вопрос «Сколько всего?».
• Сравнивать две группы путем поштучного соотнесения предметов (составления пар).
• Раскладывать 3- 5 предметов различной величины (длины, ширины, высоты) в возрастающем (убывающем) порядке; рассказывать о величине каждого предмета в ряду.
• Различать и называть треугольник, круг, квадрат, прямоугольник; шар, куб, цилиндр; знать их характерные отличия.
• Находить в окружающей обстановке предметы, похожие на знакомые фигуры.
• Определять направление движения от себя (направо, налево, вперед, назад, вверх, вниз).
• Различать левую и правую руки.
• Определять части суток.
40. Методика обучения детей счету в средней группе.
Перед воспитателем средней группы стоит главная задача — научить детей считать в пределах пяти на основе сравнения конкретных множеств. В этой группе продолжается работа по уточнению представлений о множестве, дифференциации множеств по количеству и определению каждого из них числительным (итоговым числом) на основе счета. Однако особое значение придается именно обучению счетной деятельности: дети учатся пересчитывать элементы множества в пределах пяти; отсчитывать меньшее количество элементов множества от большего по заданному числу. Значительное внимание уделяется сравнению множеств и соответствующих им смежных чисел (три и четыре; четыре и пять). Продолжается сравнение множеств поэлементно, по заданному числу и без счета, нахождение множества с большим и меньшим количеством элементов, создание равенства из неравенства путем увеличения или уменьшения количества элементов на один (единицу).
Например, на одном из занятий воспитатель предлагает детям сравнить два неупорядоченных множества: самолеты и вертолеты (шесть и семь).
«Чего больше, самолетов или вертолетов?» — спрашивает воспитатель. «Как узнать, чего больше, не пересчитывая?» Разместить одни предметы напротив других — попарно (воспитатель подводит детей к необходимости упорядочивания множеств). Вызывает ребенка и предлагает ему разместить на верхней части фланелеграфа все самолеты в один ряд. Другой ребенок размещает под элементами первого множества элементы другого так, чтобы их можно было сравнить. Дети сравнивают и устанавливают, каких предметов больше, каких меньше.
Именно практические действия детей с конкретными множествами: выделение из множества отдельных элементов, создание множеств (совокупностей) из отдельных элементов, непосредственное установление взаимно однозначного соответствия между двумя множествами — способствуют формированию у них начальных представлений о числе.
Обязательное условие ознакомления детей с образованием чисел — сравнение двух множеств. Воспитатель обращает вни
внимание на то, что мы по-разному называем числа в зависимости от того, что считаем. Например, одна кукла, но один мяч; две матрешки, но два яблока и т.д. Особое внимание следует уделять тому, чтобы ребята правильно называли числительные — один, а не заменяли его словом раз.
Для того чтобы дети осознали значение (особенность) последнего числительного в процессе счета, воспитатель учит их, заканчивая счет, делать обводящее движение рукой: «Всего две елочки, всего три матрешки».
После того как дети овладели счетом предметов в пределах трех, можно предлагать считать звуки, движения, сравнивать множества предметов и звуков по количеству. «Поставь столько матрешек, сколько раз я хлопну в ладоши. Сколько ты поставил матрешек?» Такие упражнения способствуют образованию межанализаторных связей и углубляют знания о числе.
В результате наглядного и практического сравнения становится очевидным, что с присоединением одного предмета изменяется их количество, изменяется и число. На основе сравнения двух конкретных множеств, состоящих из трех-четырех элементов, из четырех-пяти элементов, у детей возникают соответствующие связи между множествами и числами, которые им соответствуют. При этом ребята усваивают, что не все числа, которые называются в процессе счета, равнозначные. Последнее названное число характеризует численность всего множества в целом — это очень важный вывод, к которому их надо подвести.
На занятиях такого типа очень ценным является вопрос: «Почему елочек меньше, чем грибов?» (Потому что елочек три, а грибов четыре.) На основании сравнения устанавливается, что в множестве, которое характеризуется числом четыре, больше элементов, чем в множестве, которое состоит из трех элементов. «Можно ли, пересчитывая грибы, сказать, что их три? Но, пересчитывая, мы же называли число три (один, два, три, четыре)». Еще не все понимают, почему, называя числа один, два, три, четыре, нельзя сказать «всего три». Сама постановка вопроса стимулирует ребенка к осмыслению того, что последнее названное числительное обобщает все множество, оно является показателем количества всех элементов.