Смекни!
smekni.com

Факторіальні кільця та їх застосування (стр. 2 из 8)

Отже, Z[

] – підкільце кільця дійсних чисел R, а тому Z[
] – кільце.

Доведено.

2. Ідеали кільця

2.1 Поняття ідеалу

В теорії подільності цілих чисел, а також в загальній теорії подільності в кільцях, важливу роль відіграє теорема про можливість і однозначність розкладу елемента (числа) в добуток простих множників. Виявляється в деяких кільцях розклад елемента на добуток простих множників не однозначний.

Наприклад, 60=2·30=6·10, а 2, 6, 30, 10 – прості елементи в Z2

Один і той же елемент в різних кільцях може бути простим і складеним.

Наприклад, 17 в Z[i] – складене 17=(4-i) (4+i).

Щоб з’ясувати, в яких кільцях справджується загальна теорема про існування і єдиність розкладу елемента в добуток простих множників, треба узагальнити поняття подільності елементів, що робиться за допомогою ідеалу.

Означення Непорожня множина I кільця K називається його ідеалом, якщо вона замкнена відносно віднімання і множення на довільний елемент кільця.

Переконаємося, що ідеал І замкнений відносно операції додавання. Справді із замкнутості відносно операції віднімання випливає, що 0ÎА (а–а=0), – еÎІ і поряд з кожним bÎI I'(–b) – b=–eb. Тому з кожним елементом a–b містить a – (–b)=a+b. (a+b)ÎI.

Звідси випливає, що ідеал І кільця К є його підкільцем. Проте не всяке підкільце кільця буде його ідеалом.

Розглянемо деякі приклади:

№1 К–ідеал самого себе. Цей ідеал називається одиничним. Позначається Іе.

№2 Кожне кільце містить підкільце {0}, яке теж буде ідеалом кільця К. Цей ідеал називається нульовим. Позначається І0.

Іе та І0 – тривіальні ідеали. В розумінні відношення включення Іе – найбільший, а І0 – найменший серед усіх ідеалів кільця.

Означення Ідеал І кільця К називається головним, якщо він складається з усіх елементів ка кільця К, аÎК, кÎК. Говорять, що він породжений елементом а. Позначають (а).

Наприклад, ідеал Z2 кільця Z буде головним, він породжений елементом 2 або –2.

2.1 Операції над ідеалами

Теорема Перетин ab ідеалів a, bÎK є ідеалом кільця K.

Доведення.

З того, що a, bÎI1ÇI2 випливає, що abÎI1, abÎI2. Так як I1 та I2 –ідеали, то (a–b)ÎI1, (a–b)ÎI2Þ (a–b)ÎI1ÇI2. aÎI1ÇI2Þ aÎI1, aÎI2.

kÎK Þ kaÎI1, kaÎI2, kaÎI1ÇI2.

Отже, I1ÇI2ÎK.

Доведено.

Слід зауважити, що об’єднання ідеалів не завжди буде ідеалом кільця. Ця властивість поширюється на перетин n ідеалів.

Операції додавання й множення підмножин кільця можна, звичайно, застосувати до ідеалів.

Означення Сумою ідеалів I1, I2 кільця K називається множина I1+I2, яка визначається рівністю

I1+I2 ={a+bï aÎI1, bÎI2}.

Означення Добуток ідеалів I1I2 кільця К теж буде ідеалом кільця К.

Нехай а і b – довільні ідеали кільця К.

Теорема2. Сума а + b ідеалів a і b кільця К є ідеал цього кільця.

Доведення.

Справді, сума (а1 +b1) + (a2+ b2) будь-яких двох елементів a1+b1 і a2+b2 множини a+b належить до a+b, оскільки (a1+a2a, (b1+b2b, і елемент – (а+b) = (–а) + (–b), протилежний довільно вибраному елементу (a+b)Î(a+b), також належить до a+b, бо (–a)Îa, (–b)Îb.

Отже, а + b є підгрупа адитивної групи кільця K. Крім того, для будь-яких елементів a+bÎa+b і хÎK x (a+b)=xa+xbÎa+b і (a+b) x=ax+bxÎa+b.

Цим теорему доведено.

Теорема 3. Добуток ab ідеалів а і b кільця К. також є ідеал кільця К.

Доведення.

Справді, сума

+
будь-яких двох елементів множини аb є, очевидно, елемент цієї самої множини, і елемент
, протилежний довільно вибраному елементу
Îab, належить до ab. Крім того, для будь-яких

Îab і xÎK
Îab й
Îab.

Цим теорему доведено.

Таким чином, у множині ідеалів кільця К здійсненні операції додавання й множення. Операція додавання ідеалів – асоціативна і комутативна, а операція множення – асоціативна. Якщо кільце К – комутативне, то операція множення ідеалів також комутативна.

Задачі

№1

Нехай K1 – підкільце кільця K. Довести, що K1ÇI –ідеал кільця K1.

Доведення.

Введемо позначення D=K1ÇI. Покажемо спочатку, що ідеал I, як і будь–який ідеал, містить нуль–елемент кільця K. Справді, оскільки I≠Ø, то в I існує хоч один елемент а. Тоді згідно з першим пунктом означення ідеалу, елемент а–а, тобто 0, теж належить ідеалу I. Оскільки 0ÎK1, 0ÎI, то 0ÎD і тому D≠Ø.

Якщо a, bÎD, то a, bÎK1 і a, bÎI. Згідно з означенням ідеалу і критерієм підкільця, a±bÎI, a±bÎK1, а тому a±bÎD.

Нехай aÎD, bÎK1. Покажемо, що ab і ba належать D. Справді, оскільки DÍK1, то a, bÎK1 і за критерієм підкільця K1 маємо, що

ab, ba ÎK1. (1)

Оскільки DÍI, а I – ідеал кільця K, то для будь–якого елемента aÎDÍI і будь–якого елемента bÎK1ÎK маємо, що

ab, baÎI. (2)

З включень (1) і (2) випливає, що

ab, baÎK1ÇI=D.

Отже, D=K1ÇI –ідеал кільця K1.

Доведено.

№2

Чи є ідеалом (лівим або правим) така підмножина

в кільці M (2, Z).

Розв’язання

Перевіримо чи буде множина S лівим ідеалом

Перевіримо множення з ліва

Отже, дана підмножина лівим ідеалом кільця M (2, Z).

Перевіримо чи буде правим ідеалом

Отже правим ідеалом буде.

Відповідь: є правим ідеалом.

3. Факторіальні кільця

3.1 Кільця головних ідеалів та евклідові кільця

3.1.1 Подільність в області цілісності

В теорії кілець особливої уваги заслуговують кільця, які за своїми властивостями досить близькі до кільця цілих чисел. Зокрема, для цих кілець можна розвинути теорію подільності, аналогічну теорії подільності цілих чисел. Ці кільця дістали назву кілець головних ідеалів. Вивченням їх ми і будемо займатись. Але спочатку викладемо деякі загальні відомості, що стосуються подільності в області цілісності з одиницею.

Нехай R – область цілісності з одиницею. Оскільки область цілісності – комутативне кільце, то в ній поняття правого і лівого дільника елемента збігаються і тому означення подільності формулюється так:

Означення 1. Якщо для елементів а і b області цілісності R в R існує такий елемент с, що а == bс, то говорять, що а ділиться на b або b ділить а і пишуть відповідно аM b; b/а або а == 0 (mod b).

Як бачимо, означення 1 є поширенням на область цілісності означення подільності в кільці цілих чисел, яке є конкретним прикладом області цілісності.

З означення 1 випливають такі властивості подільності в області цілісності:

1. "(a, b, cÎR) [aM bÙbM cÞaM c].

2. "(a, b, cÎR) [aM cÙbM cÞ(a+b)M c Ù(a-b)M c].

3. "(a, b, cÎR) [aM b Þ acM b].

4. "(a1, b1, a2, b2,…, an, bn, R) [a1 M cÙa2M c Ù… ÙanM c Þ (a1b1 +a2 b2 + … + +an bn) M c].

Ці властивості, як легко бачити, є поширенням на область цілісності відповідних властивостей подільності в кільці цілих чисел.

5. Кожен елемент аÎR ділиться на будь-який дільник ε одиниці е. Справді, а = ε (ε-1а) і, отже, ε/а.

6. Якщо а ÎR ділиться на bÎR, то а ділиться і на bε, де ε – будь-який дільник одиниці.

Справді, з рівності а = bс випливає рівність а == bε (ε-1с) і, отже, bε/а.

7. Кожен з дільників одного з елементів а ÎR і aεÎR де ε – будь-який дільник одиниці, є дільником і іншого.

Справді, з рівності а = сg випливає рівність aε == с (εg), а з рівності аε = сq – рівність а == с (ε-1q). Отже, якщо с/а, то с/аε, і навпаки.

Всюди далі будемо розглядати елементи області цілісності R, відмінні від нуля.

Означення 2. Елементи а і b області цілісності R називаються асоційованими, якщо кожен з них є дільником іншого: