а = bс, b= аd. (1)
З рівностей (1) випливає, що а = а (сd). Звідси, скоротивши обидві частини рівності на а≠0, дістаємо сd = 1. Отже, с і d є дільники одиниці. Таким чином, якщо а і b – асоційовані елементи, то b = аε, де ε – деякий дільник одиниці. З другого боку, який би ми не взяли дільник одиниці ε, елементи а і аε асоційовані між собою, оскільки а = (аε) ε-1.
Означення 2'. Елементи а і b області цілісності R називаються асоційованими, якщо b= аε, де ε – деякий дільник одиниці.
В кільці цілих чисел, наприклад, асоційованими є кожні два числа т і – т.
Якщо а і b – асоційовані елементи, тобто а = bс і b = аd, то (а) Í (b) і (b) Í (а) і, отже, (а) = (b).
Таким чином, два асоційовані елементи а і b породжують той самий головний ідеал.
Нехай а і b – довільні елементи області цілісності R.
Означення 3. Елемент сÎR називається спільним дільником елементів а і b, якщо кожен з цих елементів ділиться на с. За властивістю 5, всі дільники одиниці е області цілісності R є спільними дільниками елементів а і b. Але в елементів а і b можуть бути й інші спільні дільники. Ми хочемо ввести поняття найбільшого спільного дільника цих елементів. Означення НСД двох цілих чисел, за яким найбільшим спільним дільником називають найбільший із спільних дільників, поширити на область цілісності не можна, оскільки в довільній області цілісності R немає відношення порядку. Проте ми знаємо й інше означення НСД двох чисел, а саме: НСД двох чисел називають такий спільний дільник цих чисел, який ділиться на будь-який інший їхній спільний дільник. Саме це означення ми й поширимо на область цілісності.
Означення 4. Найбільшим спільним дільником елементів а і b області цілісності R називається такий спільний дільник цих елементів, який ділиться на будь-який інший їхній спільний дільник.
Щоб зазначити, що d є найбільший спільний дільник елементів а і b, пишуть а=(а, b).
Якщо також d' = (а, b), то елементи d і d' діляться один на одного і, отже, вони асоційовані. З другого боку, якщо d = (а, b) і ε – будь-який дільник одиниці, то, очевидно, dе = (а, b). Як бачимо, найбільший спільний дільник елементів а і b визначається з точністю до множника ε, що є дільником одиниці.
Означення 5. Елементи а, bÎR називаються взаємно простими, якщо вони не мають спільних дільників, відмінних від дільників одиниці, тобто якщо (а, b) = 1.
Нехай ε – будь-який дільник одиниці і а – довільний елемент області цілісності R. Тоді а = аε• ε-1. З цієї рівності випливає, що всі елементи, асоційовані з елементом а, і всі дільники одиниці ε дільниками елемента а. Їх називають тривіальними, або невласними, дільниками елемента а. Всі інші дільники елемента а, тобто дільники, відмінні від аε і ε, якщо такі існують, називають нетривіальними, або власними. Так, в кільці цілих чисел Z тривіальними дільниками числа 10 є числа ±1, ±10 і нетривіальними – числа ±2, ±5.
Означення 6. Елемент аÎR називається нерозкладним, або простим, якщо він не є дільником одиниці й не має нетривіальних дільників; елемент аÎR називається розкладним, або складеним, якщо він має нетривіальні дільники.
Інакше кажучи, елемент аÎR називається розкладним, якщо його можна записати у вигляді добутку а = bс двох нетривіальних множників b і с; він називається нерозкладним, якщо його не можна записати у вигляді добутку двох нетривіальних дільників, тобто якщо з а = bс завжди випливає, що один з множників b і с є дільник одиниці, а інший – асоційований з а. Так, у кільці цілих чисел Z нерозкладними є числа ±2, ±3, ±5,… (тобто числа прості й протилежні простим); всі інші числа, відмінні від ±1, – розкладні.
Наведемо такі дві властивості нерозкладних елементів.
1. Якщо елемент рÎR нерозкладний, то і будь-який асоційований з ним елемент рε також нерозкладний. Ця властивість випливає з властивості 7 подільності елементів області цілісності R.
2. Якщо а – будь-який, а р – нерозкладний елемент з R, то або а ділиться на р, або а і р – взаємно прості.
Справді, якщо (а, р) = d, то d, як дільник нерозкладного елемента р, або є деякий дільник ε одиниці, або елемент вигляду рε. У першому випадку а і р взаємно прості, в другому – а ділиться на р.
Задачі
№1
Довести, що (-8+3
)M (1+2 ) в кільці z [ ].Доведення.
Поділимо ці гаусові числа, домноживши чисельник і знаменник частки на число спряжене із знаменником
.Так як 2–
ÎZ[ ], то (-8+3 )M (1+2 ).Доведено.
№2
Довести, що в області цілісності К елементи 25–17
і 7- асоційовані, якщо К=z[ ].Доведення.
Асоційованість доводиться тим, що одне число ділиться на друге і навпаки.
Оскільки 3–2 Î Z[ ], то (25–17 )M(7- ).Бачимо, що і (7-
)M(25–17 ).Отже, дані елементи асоційовані.
Доведено.
№3
Довести, що характеристикою області цілісності є або нуль, або просте число.
Доведення.
Нехай K – область цілісності, а е – одиниця кільця К. Якщо me≠0 для жодного натурального числа m1, то характеристика кільця K дорівнює нулю.
Нехай тепер me=0 і m найменше натуральне число, що має цю властивість, тобто m – характеристика кільця K. Тоді m≠1, оскільки е≠0. Якщо m просте число, то твердження задачі доведено.
Нехай m складене число. Тоді існують натуральні числа s і t такі, що 1<s, t<m і m=st. Внаслідок комутативності кільця K маємо
0=me=(st) e=(se) (te).
Крім того, оскільки m – характеристика кільця K і s<m, t<m, то se≠0, te≠0 і тому (se) (te)=me≠0, бо K, як область цілісності, є кільцем без дільників нуля. Отже, ми прийшли до суперечності.
Тому характеристикою області цілісності є або нуль, або просте число.
Доведено.
3.1.2 Кільце головних ідеалів
Перейдемо тепер до вивчення кілець головних ідеалів.
Означення. Кільцем головних ідеалів називається область цілісності з одиницею, в якій кожен ідеал є головний.
Найпростішим прикладом кілець головних ідеалів є кільце цілих чисел Z: кільце Z, як відомо, є область цілісності з 1 і, за теоремою, кожен його ідеал головний.
Кожне поле Р є кільце головних ідеалів. Справді, поле Р є областю цілісності з одиницею; якщо U є ненульовий ідеал поля Р, то разом з будь-яким своїм елементом а ≠ 0 він містить і елемент аa-1 = 1 і, отже, U = (1). Кільцем головних ідеалів є також кільце многочленів від змінної х з коефіцієнтами з поля Р.
Звичайно, не кожна область цілісності з одиницею є кільцем головних ідеалів. Нижче ми наведемо приклади таких областей цілісності. А тепер займемося вивченням властивостей кілець головних ідеалів. Всюди далі вважатимемо, що R – кільце головних ідеалів.
Теорема 1. Будь-які два елементи а і b кільця головних ідеалів R мають найбільший спільний дільник d, причому d= rа + sb, де r і s – деякі елементи кільця R.
Доведення.
Якщо один з елементів а і b дорівнює нулю, то справедливість теореми очевидна. Нехай а і b – будь-які відмінні від нуля елементи кільця R. Вони породжують ідеал (а, b), який складається з усіх елементів вигляду ха + уb, де х і у – будь-які елементи кільця R. Оскільки R – кільце головних ідеалів, то ідеал (а, b) є головний, тобто породжується деяким елементом dÎR: (а, b) = (d).
Тому
d = rа + sb (r, sÎR), (2)
а = gd, b = hd (g, hÎR). (3)
З рівностей (3) випливає, що d є спільний дільник елементів а і b;
з рівності ж (2) випливає, що d ділиться на будь-який спільний дільник елементів а і b. Отже, а = (а, b).
Доведено.
Спираючись на теорему 1, доведемо твердження, яке є критерієм взаємної простоти двох елементів кільця головних ідеалів.
Теорема 2. Елементи а і b кільця головних ідеалів R взаємно прості тоді і тільки тоді, коли в кільці R є такі елементи r і s, що rа +sb = 1.
Доведення.
Необхідність умови очевидна: якщо а і b – взаємно прості, тобто (а, b) = 1, то, за теоремою 1, в кільці R існують такі елементи r і s, що rа + sb = 1. Доведемо достатність умови. Припустимо, що в кільці R існують такі елементи r і s, що rа + sb = 1.
З цієї рівності випливає, що спільними дільниками елементів а і b можуть бути лише дільники одиниці і, отже, елементи а і b взаємно прості.
Доведено.
Теорема 3. Якщо елемент аÎR взаємно простий з кожним із елементів bÎR і сÎК, то він взаємно простий і з добутком цих елементів.
Доведення.
Оскільки а і b – взаємно прості, то, за теоремою 2, існують такі r, sÎR, що