Смекни!
smekni.com

Факторіальні кільця та їх застосування (стр. 4 из 8)

rа + sb = 1.

Помноживши цю рівність на с, дістаємо: а (rc) + (bс) s = с. З цієї рівності випливає, що кожен спільний дільник елементів а і bс буде дільником і елемента с. Але за умовою теореми спільними дільниками елементів а і с є лише дільники одиниці, тому і спільними дільниками a і bс будуть лише дільники одиниці й, отже, а і bс взаємно прості.

Теорема 4. Якщо добуток елементів aÎR і bÎR ділиться на елемент с ÎR, але а і с взаємно прості, то b ділиться на с.

Доведення.

Оскільки а і с – взаємно прості, то в кільці R існують такі r і s, що

rа + sc = 1.

Помноживши цю рівність на b, дістаємо:

(аb) r+с (bs) = b.

Обидва доданки лівої частини останньої рівності діляться на с, а тому і права її частина b ділиться на с.

Теорема 5. Якщо елемент а ÎR ділиться на кожен з елементів bÎR і сÎR, які між собою взаємно прості, то а ділиться і на добуток bс.

Доведення.

Справді, за умовою теореми, а.: b, тобто а = bg. Оскільки а M с, то bgM с. Але b і с взаємно прості, тому, за теоремою 4, g: с, тобто g=cq.

Отже, а == (bс) q, тобто аMbс.

Доведено.

Теорема 6. Якщо R – кільце головних ідеалів і р – простий елемент цього кільця, то фактор-кільце R/(р) є поле.

Доведення.

Одиничний елемент

= 1 + (р) кільця R/(р) відмінний від
= (р). Справді, якби
=
, то елемент 1 містився б в ідеалі (р) і тому р/1. Але елемент р не може бути дільником одиниці, оскільки він нерозкладний. Отже, в кільці R/(р) є принаймні один відмінний від нуля елемент.

Покажемо, що в кільці R/(р) здійсненна операція ділення, крім_ділення на нуль, тобто що для будь-яких елементів

= a + (р) ≠ 0 і
=
+ (р) кільця R/(р) рівняння
=
має в цьому кільці розв'язок. Справді, оскільки
, то а не ділиться на р. Отже, за другою властивістю нерозкладних елементів, елементи а і р – взаємно прості, тобто (а, р) = 1. Тому, за теоремою 2, в кільці R існують такі елементи r і s, що аr + рs = 1. Звідси

аrb + рsb =b, аrb º b (тоd p),

і, отже,

=
. Таким чином,
=
є розв'язком рівняння
=
.

Доведено.

Наслідок. Якщо добуток кількох елементів кільця головних ідеалів R ділиться на простий елемент рÎR, то принаймні один із співмножників ділиться на р.

Доведення.

Припустимо, що добуток a1 • а2 •… • as (aiÎR) ділиться на нерозкладний елемент р ÎR, тобто що a1а2… аsÎ (р).

Розглянемо елементи ai = аi+(р) (і =1, 2,…. s) і

= a1 a2 …as+(р). За означенням операції множення в кільці R/(р) =

Оскільки a1 a2 …asÎ(р), то
=
і, отже,
=
Звідси, оскільки, за теоремою 6, R/(р) є поле, випливає, що для деякого m (1 < т < s)
=
. Але
=
означає, що amÎ(p), тобто що amM р.

Цим справедливість наслідку доведено.

Нашою метою буде тепер доведення твердження про можливість розкладу кожного елемента кільця головних ідеалів у добуток простих (нерозкладних) множників. Воно ґрунтується на такій лемі.

Лема. В кільці головних ідеалів R не існує нескінченної строго зростаючої послідовності ідеалів

U0Ì U1Ì U2 ÌÌUNÌ …. (4)

Доведення.

Припустимо, що нескінченна строго зростаюча послідовність (4) існує. Позначимо символом b об'єднання всіх ідеалів послідовності (4). Множина b є ідеал кільця R. Справді, якщо aєb і bєb, то а є елемент деякого ідеалу Us, і b – деякого ідеалу Ul. Тому а і b є елементи ідеалу Um, де m – більший з індексів s і l. Отже, (а + b)є UmÌb, (а – b)єUmÌb і для будь-якого rєR arєUmÌb. Оскільки R – кільце головних ідеалів, то ідеал b головний. Нехай b= (b). Елемент b, як елемент об'єднання ідеалів послідовності (4), належить до деякого ідеалу Uk, а отже, і до кожного ідеалу Ui, при і ≥k

Тому (b) = Uk=Uk+1 = Uk+2 =…. А це суперечить нашому припущенню.

Доведено.

Теорема7. В кільці головних ідеалів R кожен відмінний від нуля елемент, що не е дільником одиниці, розкладається в добуток простих множників.

Доведення.

Для кожного простого елемента кільця R теорема справедлива: для простого елемента добуток, про який говориться в теоремі, складається з одного множника. Припустимо, що в кільці R є відмінний від нуля елемент а, який не можна розкласти в добуток простих множників. Елемент а не простий і, отже, а = a1a2, де a1 і a2 – нетривіальні дільники елемента а.

Принаймні один з елементів a1 і a2 не можна розкласти в добуток простих множників, бо в противному разі і елемент а розкладався б у добуток простих множників. Не втрачаючи загальності міркувань, припустимо, що a1 не можна розкласти в добуток простих множників. Тоді a1=a11a12, де a11 та a12–нетривіальні дільники. Принаймні один з елементів a11 та a12 також не можна розкласти в добуток простих множників. Нехай цим елементом є a11. Для елемента a11 міркування повторимо і т.д. Цей процес послідовного розкладу, очевидно, не може обірватися. Таким чином, ми дістанемо нескінченну послідовність елементів

а, a1, a11, a111,…, (5)

у якій кожен наступний член є власним дільником попереднього.

Якщо ai+1 є власним дільником ai, то (ai+1)Ì(ai), оскільки ai=ai+1r, де r – деякий елемент R. Тому головні ідеали, породжені елементами послідовності (5), утворюють нескінченну строго зростаючу послідовність ідеалів

(а)Ì(a1)Ì(a11)Ì(a111)Ì…,

а це суперечить доведеній вище лемі. Отже, наше припущення неправильне.

Доведено.

Покажемо тепер, що розклад, про який іде мова в теоремі 7, однозначний з точністю до порядку співмножників і до дільників одиниці.

Теорема8. Якщо

a =p1p2…pr =q1q2…qs

є два розклади елемента а кільця головних ідеалів R в добуток простих множників, то r=s і, при відповідній нумерації співмножників, справджуються рівності qii pi (і == 1, 2,…, r), де εi – деякий дільник одиниці кільця R.

Доведення.

Доводитимемо індукцією по r. При r = І справедливість твердження очевидна.

Справді, оскільки елемент а = р1 простий, то добуток q1q2…qs

може містити лише один множник q1=p1.

Припустимо, що теорема правильна для r – 1 (2 £ r), і доведемо, що в такому разі теорема справедлива й для r. Справді, оскільки

a =p1p2…pr і a = q1q2…qs то

p1p2…pr =q1q2…qs (6)

З рівності (6) випливає, що q1q2…qs ділиться на p1. Тому, за наслідком з теореми 6, принаймні один із співмножників q1,q2,…, qs ділиться на pi. Ми вважатимемо, що на p1 ділиться множник q1: цього завжди можна досягти зміною нумерації множників q1,q2,…, qs. Оскільки q1 – простий елемент і ділиться на простий елемент p1, то q1=e1p1, де e1 – деякий дільник одиниці кільця R. Підставивши в рівність (6) e1p1 замість q1 і скоротивши обидві частини одержаної рівності на р1, дістанемо:

p2p3…pr =(e1q2) q3…qs.

Але, за індуктивним припущенням, r– 1 == s– 1 і при відповідній нумерації множників q1,q2,…, qr:

q2=e1q2=e2p2, q3=e3p3, …, qr=erpr,