де ei – деякі дільники одиниці кільця R. Тому r = s і при відповідній нумерації множників q1, q2, …, qr:
q1=e1p1, q2=e1–1e2p2 =e2p2, q3=e3p3, …, qr=erpr
Доведено.
Зауважимо, що теореми 7 і 8 справедливі, зокрема, для кільця цілих чисел, яке є кільцем головних ідеалів.
Постає запитання: чи не можна теореми 7 і 8 поширити на клас областей цілісності більш широкий, ніж кільце головних ідеалів? Відповідь на це запитання в загальному випадку негативна. Є області цілісності, в яких не справджується теорема про розклад елементів області цілісності в добутки простих множників, а також області цілісності, в яких розклад елементів на прості множники хоч і можливий, але не однозначний. Наведемо приклади таких областей цілісності, не вивчаючи її докладно.
Нехай К – множина всіх дійсних чисел виду
де n – будь-яке натуральне число, a1,a2,…, an – будь-які цілі числа й r1, r2,…, rn – будь-які числа виду
(m, k – цілі невід'ємні числа). Сума, різниця й добуток чисел такого виду – числа такого самого виду. Отже, К – кільце. При п = 1 і r1=0 дістанемо с = а1; тому К містить усі цілі числа, зокрема 1. Легко бачити, що кільце К є область цілісності. У цій області цілісності число 2 розкладається на множники так:Можна довести, що числа виду
, де k – ціле невід'ємне число, не є дільниками одиниці в кільці К. Таким чином, число 2 не можна розкласти на прості множники в кільці К.Нехай тепер Q – множина всіх комплексних чисел виду
, де а і b – будь-які цілі числа. Сума, різниця й добуток чисел такого виду є, очевидно, числа такого самого виду. Отже, Q – кільце. При b = 0, z = а, а тому в Q містяться всі цілі числа. Отже, кільце Q є область цілісності. Можна довести, що в цій області цілісності кожне число розкладається на прості множники. Проте не можна стверджувати, що для цього кільця характерна однозначність розкладу на прості множники. Для числа 6, наприклад, у цьому кільцііснують такі два розклади: 6=2·3 і 6 = (
) ( ).Поряд з цим існують області цілісності, які не є кільцями головних ідеалів, проте в них справджуються теореми 7 і 8.
3.1.3 Факторіальність кільця головних ідеалів
Нашою метою являється узагальнення на кільці головних ідеалів теореми про існування й одиничність розкладу елементів кільця цілих чисел Z на прості множники.
Означення Говорять, що елемент а області цілісності K має однозначний розклад на прості множники, якщо виконуються умови:
(1) існують у K такі прості елементи рi, що
;(2) якщо
- інший розклад, у якому qi – прості елементи K, то m=n і при відповідній нумерації рi ~ qi для i=1,…, m.Означення Кільце називається факторіальним, якщо воно є областю цілісності і всякий відмінний від нуля необоротний елемент кільця має однозначний розклад на прості множники.
Відзначимо, що будь-яке поле є факторіальним кільцем, тому що не має відмінних від нуля необоротних елементів.
Теорема Кільце головних ідеалів факторіальне.
Доведення.
Нехай K – кільце головних ідеалів. Нам треба довести, що усякий відмінний від нуля необоротний елемент кільця має розкладання на прості множники. Припустимо, що існує в K необоротний ненульовий елемент а, що нерозкладний на прості множники в Ж. Тоді елемент а є складеним. Отже, його можна подати у вигляді добутку двох власних дільників а=аibi і (a)
(ai)Принаймні один із множників аi, bi, наприклад a1, не має розкладу на прості множники. Отже, a1 можна подати у вигляді добутку двох власних множників:
a1=a2b2, (a1)=(a2)
і т.д. Таким чином, існує нескінченний зростаючий ланцюжок
(a)Ì(a1)Ì(a2)Ì…
ідеалів кільця K, що неможливо, бо за твердженням зростаючий ланцюжок не може бути нескінченним. Отже, усякий необоротний відмінний від нуля елемент кільця K має розклад на прості множники.
Доведемо однозначність розкладу на прості множники. Якщо a – простий елемент, то теорема вірна. Припустимо, що теорема вірна для елементів, представлених у вигляді добутку n простих множників, і доведемо, що тоді вона вірна для елементів, представлених у вигляді добутку n+1 простих множників. Нехай дані будь-які два розклади елемента a на прості множники:
a=p1…pnpn+1=q1…qsqs+1 (1)
Простий елемент рn+1 ділить добуток q1…qsqs+1. Отже, він ділить хоча б один із множників q1…qsqs+1, наприклад qs+1. Так як рn+1 і qs+1 – прості, тo qs+1=upn+1, де u – оборотний елемент кільця. Скорочуючи обидві частини рівності (1) на рn+1, маємо
p1…pn=q1… (uqs).
Отже, по індуктивному припущенню, n=s і при відповідній нумерації рi ~ qi для i=1,…, n. Крім того, рn+1 ~ пn+1.
Доведено.
Задачі
№1
Довести, що число 4 в кільці Z[
] неоднозначно розкладається в добуток простих множників.Доведення.
Знайдемо спочатку дільники одиниці в Z[
]. Нехай a+b , c+d – дільники одиниці, a, b, c, d ÎZ. Тоді(a+b
) (c+d )=1.Знайдемо норму обох частин цієї рівності:
Nr (a+b
)=(a2+3b2).Маємо
(a2+3b2) (c2+3d2)=1. (1)
Рівність (1) виконується, якщо
a2+3b2=c2+3d2=1. (2)
Рівність (2), в свою чергу, виконується при a=±1, b=0, c=±1, d=0. Отже, в кільці Z[
] лише 2 дільники одиниці: 1, –1.Доведемо, що для числа 4 в кільці Z[
] є два різних розклади в добуток простих множників:4=2·2=(1+
) (1– ).Для цього покажемо, що 2, 1+
, 1– є прості числа в Z[ ], а пари чисел 2, 1+ та 2, 1– не є асоційованими.Оскільки в кільці Z[
] асоційовані числа відрізняються лише знаком, то покажемо, що 2, 1+ , 1– є прості числа в Z[ ].Якщо 2=(a+b
) (c+d ), то знайшовши норми від обох частин, дістанемо 4= (a2+3b2) (c2+3d2).Число 4 розкладається в добуток натуральних чисел двома способами:
4=2·2=1·4.
Якщо a2+3b2=2, то b2<1, тобто b=0. Тоді a2=2, що неможливо для цілого числа a. Отже, a2+3b2=1 або a2+3b2=4. Якщо a2+3b2=1, то a+b
– дільник одиниці. Якщо a2+3b2=4, то c2+3d2=1 і c+d – дільник одиниці.Отже, 2 є просте число в кільці Z[
]. Оскільки Nr (1± )=4, то аналогічно доводять, що числа 1± є простими.Отже, число 4 в кільці Z[
] розкладається на прості множники двома різними способами.Доведено.
3.1.4 Евклідові кільця, їх факторіальність
Порівняно з кільцями головних ідеалів більш близькими до кільця цілих чисел за своїми властивостями є кільця, в яких справедлива теорема, що є аналогом теореми про ділення з остачею в кільці цілих чисел. Ці кільця називають евклідовими. Вони означаються так:
Означення. Область цілісності R з одиницею називається евклідовим кільцем, якщо існує відображення φ множини відмінних від 0 елементів цієї області цілісності в множину цілих невід'ємних чисел N0, тобто φ:R\{0}→N0, яке задовольняє таку вимогу: для будь-яких елементів a, bÎR, b¹0 в R існують такі елементи q і r, що а =bq+r, причому або r= 0, або φ(r)<φ(b).