Смекни!
smekni.com

Факторіальні кільця та їх застосування (стр. 5 из 8)

де ei – деякі дільники одиниці кільця R. Тому r = s і при відповідній нумерації множників q1, q2, …, qr:

q1=e1p1, q2=e1–1e2p2 =e2p2, q3=e3p3, …, qr=erpr

Доведено.

Зауважимо, що теореми 7 і 8 справедливі, зокрема, для кільця цілих чисел, яке є кільцем головних ідеалів.

Постає запитання: чи не можна теореми 7 і 8 поширити на клас областей цілісності більш широкий, ніж кільце головних ідеалів? Відповідь на це запитання в загальному випадку негативна. Є області цілісності, в яких не справджується теорема про розклад елементів області цілісності в добутки простих множників, а також області цілісності, в яких розклад елементів на прості множники хоч і можливий, але не однозначний. Наведемо приклади таких областей цілісності, не вивчаючи її докладно.

Нехай К – множина всіх дійсних чисел виду

де n – будь-яке натуральне число, a1,a2,…, an – будь-які цілі числа й r1, r2,…, rn – будь-які числа виду

(m, k – цілі невід'ємні числа). Сума, різниця й добуток чисел такого виду – числа такого самого виду. Отже, К – кільце. При п = 1 і r1=0 дістанемо с = а1; тому К містить усі цілі числа, зокрема 1. Легко бачити, що кільце К є область цілісності. У цій області цілісності число 2 розкладається на множники так:

Можна довести, що числа виду

, де k – ціле невід'ємне число, не є дільниками одиниці в кільці К. Таким чином, число 2 не можна розкласти на прості множники в кільці К.

Нехай тепер Q – множина всіх комплексних чисел виду

, де а і b – будь-які цілі числа. Сума, різниця й добуток чисел такого виду є, очевидно, числа такого самого виду. Отже, Q – кільце. При b = 0, z = а, а тому в Q містяться всі цілі числа. Отже, кільце Q є область цілісності. Можна довести, що в цій області цілісності кожне число розкладається на прості множники. Проте не можна стверджувати, що для цього кільця характерна однозначність розкладу на прості множники. Для числа 6, наприклад, у цьому кільці

існують такі два розклади: 6=2·3 і 6 = (

) (
).

Поряд з цим існують області цілісності, які не є кільцями головних ідеалів, проте в них справджуються теореми 7 і 8.


3.1.3 Факторіальність кільця головних ідеалів

Нашою метою являється узагальнення на кільці головних ідеалів теореми про існування й одиничність розкладу елементів кільця цілих чисел Z на прості множники.

Означення Говорять, що елемент а області цілісності K має однозначний розклад на прості множники, якщо виконуються умови:

(1) існують у K такі прості елементи рi, що

;

(2) якщо

- інший розклад, у якому qi – прості елементи K, то m=n і при відповідній нумерації рi ~ qi для i=1,…, m.

Означення Кільце називається факторіальним, якщо воно є областю цілісності і всякий відмінний від нуля необоротний елемент кільця має однозначний розклад на прості множники.

Відзначимо, що будь-яке поле є факторіальним кільцем, тому що не має відмінних від нуля необоротних елементів.

Теорема Кільце головних ідеалів факторіальне.

Доведення.

Нехай K – кільце головних ідеалів. Нам треба довести, що усякий відмінний від нуля необоротний елемент кільця має розкладання на прості множники. Припустимо, що існує в K необоротний ненульовий елемент а, що нерозкладний на прості множники в Ж. Тоді елемент а є складеним. Отже, його можна подати у вигляді добутку двох власних дільників а=аibi і (a)

(ai)

Принаймні один із множників аi, bi, наприклад a1, не має розкладу на прості множники. Отже, a1 можна подати у вигляді добутку двох власних множників:

a1=a2b2, (a1)=(a2)

і т.д. Таким чином, існує нескінченний зростаючий ланцюжок

(a)Ì(a1)Ì(a2)Ì…

ідеалів кільця K, що неможливо, бо за твердженням зростаючий ланцюжок не може бути нескінченним. Отже, усякий необоротний відмінний від нуля елемент кільця K має розклад на прості множники.

Доведемо однозначність розкладу на прості множники. Якщо a – простий елемент, то теорема вірна. Припустимо, що теорема вірна для елементів, представлених у вигляді добутку n простих множників, і доведемо, що тоді вона вірна для елементів, представлених у вигляді добутку n+1 простих множників. Нехай дані будь-які два розклади елемента a на прості множники:

a=p1…pnpn+1=q1…qsqs+1 (1)

Простий елемент рn+1 ділить добуток q1…qsqs+1. Отже, він ділить хоча б один із множників q1…qsqs+1, наприклад qs+1. Так як рn+1 і qs+1 – прості, тo qs+1=upn+1, де u – оборотний елемент кільця. Скорочуючи обидві частини рівності (1) на рn+1, маємо

p1…pn=q1… (uqs).

Отже, по індуктивному припущенню, n=s і при відповідній нумерації рi ~ qi для i=1,…, n. Крім того, рn+1 ~ пn+1.

Доведено.

Задачі

№1

Довести, що число 4 в кільці Z[

] неоднозначно розкладається в добуток простих множників.

Доведення.

Знайдемо спочатку дільники одиниці в Z[

]. Нехай a+b
, c+d
– дільники одиниці, a, b, c, d ÎZ. Тоді

(a+b

) (c+d
)=1.

Знайдемо норму обох частин цієї рівності:

Nr (a+b

)=(a2+3b2).

Маємо

(a2+3b2) (c2+3d2)=1. (1)

Рівність (1) виконується, якщо

a2+3b2=c2+3d2=1. (2)

Рівність (2), в свою чергу, виконується при a=±1, b=0, c=±1, d=0. Отже, в кільці Z[

] лише 2 дільники одиниці: 1, –1.

Доведемо, що для числа 4 в кільці Z[

] є два різних розклади в добуток простих множників:

4=2·2=(1+

) (1–
).

Для цього покажемо, що 2, 1+

, 1–
є прості числа в Z[
], а пари чисел 2, 1+
та 2, 1–
не є асоційованими.

Оскільки в кільці Z[

] асоційовані числа відрізняються лише знаком, то покажемо, що 2, 1+
, 1–
є прості числа в Z[
].

Якщо 2=(a+b

) (c+d
), то знайшовши норми від обох частин, дістанемо 4= (a2+3b2) (c2+3d2).

Число 4 розкладається в добуток натуральних чисел двома способами:

4=2·2=1·4.

Якщо a2+3b2=2, то b2<1, тобто b=0. Тоді a2=2, що неможливо для цілого числа a. Отже, a2+3b2=1 або a2+3b2=4. Якщо a2+3b2=1, то a+b

– дільник одиниці. Якщо a2+3b2=4, то c2+3d2=1 і c+d
– дільник одиниці.

Отже, 2 є просте число в кільці Z[

]. Оскільки Nr (1±
)=4, то аналогічно доводять, що числа 1±
є простими.

Отже, число 4 в кільці Z[

] розкладається на прості множники двома різними способами.

Доведено.

3.1.4 Евклідові кільця, їх факторіальність

Порівняно з кільцями головних ідеалів більш близькими до кільця цілих чисел за своїми властивостями є кільця, в яких справедлива теорема, що є аналогом теореми про ділення з остачею в кільці цілих чисел. Ці кільця називають евклідовими. Вони означаються так:

Означення. Область цілісності R з одиницею називається евклідовим кільцем, якщо існує відображення φ множини відмінних від 0 елементів цієї області цілісності в множину цілих невід'ємних чисел N0, тобто φ:R&bsol;{0}→N0, яке задовольняє таку вимогу: для будь-яких елементів a, bÎR, b¹0 в R існують такі елементи q і r, що а =bq+r, причому або r= 0, або φ(r)<φ(b).