Смекни!
smekni.com

Применение экономико-математического моделирования для обоснования (стр. 2 из 4)

Если же

-я компонента хотя бы одного оптимального решения одной из двойственных задач положительна, то каждое оптимальное решение другой двойственной задачи обращает
-е ограничение в строгое равенство.

Т.е. оптимальные решения

и
пары двойственных задач удовлетворяют условиям

(1)

(2)

Доказательство: Пусть

и
– оптимальные решения пары двойственных задач. Тогда для

,

они удовлетворяют следующим ограничениям:

. (3)

Умножим (3), соответственно, на

и
, и просуммируем полученные выражения:

. (4)

Из основной теоремы двойственности следует

. (5)

И с учетом (4) получаем:

,

.

Первое из этих выражений можем переписать в виде

,

и так как все

и выражения в скобках неотрицательны, то опуская å, получим:

.

Аналогично получим:

.

Что и требовалось доказать.

Справедлива и обратная теорема.

1.3Экономико-математическая модель использования заготовленных кормов

Для эффективного ведения животноводства большое значение имеет правильное использование кормов в стойловый период, ко> торый продолжается 7—8 месяцев в году, т. с. 60—70% всего времени продуктивного использования животных. В этот период имеется несколько видов кормов, что позволяет находить наилуч­шее их сочетание для разных видов и групп животных. Места складирования и места потребления отдельных видов кормов не всегда совпадают, что требует при их распределении учитывать как потребности животных в кормах, так и затраты на их транс­портировку.

В сельскохозяйственных предприятиях на стойловый период ежегодно составляется план использования заготовленных и за­купаемых кормов по видам, половозрастным группам животных, а также по фермам или отделениям.

Оптимизация плана использования заготовленных кормов предполагает получение максимума продукции животноводства с наименьшими затратами и сохранением поголовья на конец пе­риода. Поэтому постановку задачи оптимизации использования кормов можно сформулировать следующим образом: определить, какие корма и в каком количестве необходимо скормить различ­ным видам и половозрастным группам животных, чтобы получить максимальный экономический эффект от использования заготов­ленных кормов и покупаемых добавок.

Наиболее приемлемыми критериями оптимальности являются максимальное производство животноводческой продукции или сум­мы чистого дохода, получаемого в животноводстве.

В оптимальном плане использования кормов должны быть ре­шены вопросы распределения имеющихся в хозяйстве кормов по видам и половозрастным группам скота и птицы, оптимальные рационы кормления для каждой группы животных, выявлены объемы приобретения белковых, минеральных и витаминных до­бавок, определено количество животноводческой продукции, кото­рое можно получить при рациональном использовании кормов.

Для построения экономико-математической модели оптимиза­ции плана иснользования имеющихся кормов в хозяйстве необхо­дима следующая информация:

1) виды кормов и кормовых добавок, которыми располагает
хозяйство на планируемый период;

2) виды минеральных, витаминных добавок и возможность их
приобретения;

3) виды скота и птицы, разводимых в хозяйстве, и деление их
на основные половозрастные и хозяйственные группы;

4) продуктивность и нормы кормления в расчете на одну го­
лову по различным половозрастным группам, по видам животных
и птицы;

5) предельно допустимые границы содержания отдельный кор­мов или групп кормов в рационе кормления различных половоз­растных групп по видам животных и птицы;

6) количество кормо – дней пребывания различных половозраст­ных групп в хозяйстве на планируемый период;

7) предельно допустимые нормы ввода кормов, минеральных
и витаминных добавок в рацион различных половозрастных
групп но видам животных и птицы;

8) себестоимость кормов и цены на животноводческую про­дукцию;

9) затраты на доставку кормов от места хранения до места
скармливания.

2 Раздел.

Методы решения задач линейного программирования.

2.1 Графический метод

Рассмотрим задачу линейного программирования относительно двух неизвестных:

где (2.1) – целевая функция задачи, (2.2) – основные ограничения, (2.3) – условия не отрицательности переменных.

Неравенствам (2.2) на плоскости соответствуют полуплоскости. Чтобы их построить, необходимо сначала построить прямые, отделяющие эти полуплоскости. Уравнения отделяющих прямых получаем их соответствующих неравенств путём замены знака неравенств на " = ". Отделяющие прямые лучше строить по двум точкам, которые являются точками пересечения с осями координат (у этих точек одна из координат равна нулю).

Чтобы выбрать полуплоскость, соответствующую заданному неравенству, достаточно проверить, принадлежит ли точка начала координат (0,0) полуплоскости, подставив координаты (0,0) в неравенство. Если неравенство окажется справедливым, то принадлежит, в противном случае – нет.

Неравенства (2.2) должны выполняться одновременно. Это означает, что решение задачи будет лежать сразу на всех построенных полуплоскостях. С математической точки зрения это равносильно тому, что решение принадлежит пересечению построенных полуплоскостей.

Условие не отрицательности переменных (2.3) требует, чтобы из пересечения полуплоскостей выбрали ту часть, которая лежит в 1 – ой четверти.

Целевая функция (2.1), как функция от двух переменных имеет пространственное представление. Для изображения её на плоскости используют линии уровня, уравнения которых получаем из целевой функции, приравнивая её к различным числовым значениям:

с1х1 + с2х2 = с, где с Î (– ∞, + ∞ ). (2.4)

Достаточно построить две линии уровня (выбрав произвольные значения С), чтобы, сравнив на них значения целевой функции, определить направление max или min.

Возможные варианты решения задачи линейного программирования графическим методом представлены на рис 2.1.

Решим задачу линейного программирования

2.2. f(x) = – x1→ max (min)

Строим отделяющие прямые.

1-я отд. прямая

12=4

х1=0; х2=4 (0;4)

х2=0; х1=2 (2;0)

2-я отд. прямая

12=8

х1=0; х2=8 (0;8)

х2=0; х1=4 (4;0)

3-я отд. прямая

х1-2х2=3

х1=0; х2=-1,5 (0;-1,5)

х2=0; х2=3 (3;0)

4-я отд. прямая

1+2х2=6

х1=0;х2=3 (0;3)

х2=0; х1=-6 (-6;0)

Линии уровня

1-я линия

1=5

х1=-5

2-я линия

1=-5

Х1=5

При решении задачи на максимум целевая функция достигнет своего оптимального значения в точке А, а на минимум в точке В. Найдем координаты этих точек.

А=(1-я отд. прямая) (4 отд. прямая)

12=4 х2=4-2х1 -5х1= -2 х2= 4-0,8

1+2х2=6 - х1+2(4-2 х1)=6 х1= 0,4 х2= 3,2

А(0,4; 3,2)

В(2-я отд. прямая) (3-я отд. прямая)

12=8 х1= 3+2х2 х1=3+0,8

х1 - 2х2=3 2(3+2х2) + х2=8 х1= 3,8

2= 2

х2= 0,4

В(3,8; 0,4)

F (max) А -0,4

F (min) В -3,8

2.2 Симплекс метод

Учитывая тот факт, что целевая функция достигает своего оптимального значения в одной из вершин многогранника допустимых решений задачи линейного программирования, то всякая процедура, предусматривающая направленный перебор угловых точек области определения задачи, должна привести к отысканию оптимального решения. Эта идея положена в основу классического метода решения задач линейного программирования – симплекс – метода, который разработан Дж. Данцигом в 1947 году.