· Абсолютное дополнение:
Операция дополнения подразумевает некоторый универсум (универсальное множество U, которое содержит A):
Относительным же дополнением называется А\В (см.выше):
· Мощность множества:
| A |
Результатом является кардинальное число (для конечных множеств — натуральное).
· Множество всех подмножеств (булеан):
Обозначение происходит из того, что
в случае конечных множеств.Сначала выполняются операции дополнения, затем объединения, пересечения и разности, которые имеют одинаковый приоритет. Последовательность выполнения операций может быть изменена скобками.
11. ЧИСЛОВЫЕ МНОЖЕСТВА
· Определение: Числа вида N = {1, 2, 3, ....} называются натуральными. Натуральные числа появились в связи с необходимостью подсчета предметов
1. Если m, n, k - натуральные числа, то при m - n = k говорят, что m - уменьшаемое, n - вычитаемое, k - разность; при m : n = k говорят, что m - делимое, n - делитель, k - частное, число m называют также кратным числа n, а число n - делителем числа m, Если число m - кратное числа n, то существует натуральное число k, такое, что m = kn.
2. Из чисел с помощью знаков арифметических действий и скобок составляются числовые выражения. Если в числовом выражении выполнить указанные действия, соблюдая принятый порядок, то получиться число, которое называется значением выражения.
3. Порядок арифметических действий: сначала выполняются действия в скобках; внутри любых скобок сначала выполняют умножение и деление, а потом сложение и вычитание.
4. Если натуральное число m не делится на натуральное число n, т.е. не существует такого натурального числа k, что m = kn, то рассматривают деление с остатком: m = np + r, где m - делимое, n - делитель (m>n), p - частное, r - остаток.
5. Если число имеет только два делителя (само число и единица), то оно называется простым: если число имеет более двух делителей, то оно называется составным.
6. Любое составное натуральное число можно разложить на простые множители, и только одним способом. При разложении чисел на простые множители используют признаки делимости.
7. Для любых заданных натуральных чисел a и b можно найти наибольший общий делитель. Он обозначается D(a,b). Если числа a и b таковы, что D(a,b) = 1, то числа a и b называются взаимно простыми.
8. Для любых заданных натуральных чисел a и b можно найти наименьшее общее кратное. Оно обозначается K(a,b). Любое общее кратное чисел a и b делится на K(a,b).
9. Если числа a и b взаимно простые, т.е. D(a,b) = 1, то K(a,b) = ab .
· Определение: Числа вида: Z = {... -3, -2, -1, 0, 1, 2, 3, ....} называются целыми числами, т.е. целые числа - это натуральные числа, числа, противоположные натуральным, и число 0.
Натуральные числа 1, 2, 3, 4, 5.... называют также положительными целыми числами. Числа -1, -2, -3, -4, -5, ...,противоположные натуральным, называются отрицательными целыми числами.
· Определение: Целые и дробные числа составляют множество рациональных чисел: Q = Z
{nm}, где m - целое число, а n - натуральное число.1. Среди дробей, обозначающих данное рациональное число, имеется одна и только одна несократимая дробь.Для целых чисел - это дробь со знаменателем 1.
2. Каждое рациональное число представимо в виде конечной или бесконечной периодической десятичной дроби.
3. Дробь nm называется правильной, если ее числитель меньше знаменателя, и неправильной, если ее числитель больше знаменателя или раен ему.
4. Всякую неправильную дробь можно представить в виде суммы натурального числа и правильной дроби.
5. Основное свойство дроби: если числитель и знаменатель данной дроби умножить на одно и то же натуральное число, то получится дробь, равная данной.
6. Если числитель и знаменатель дроби взаимно простые числа, то дробь называется несократимой.
7. В виде десятичной дроби можно записать правильную дробь, знаменатель которой равен степени с основанием 10. Если к десятичной дроби приписать справа нуль или несколько нулей, то получится равная ей дробь. Если десятичная дробь оканчивается одним или несколькими нулями, то эти нули можно отбросить - получиться равная ей дробь. Значимыми цифрами числа называются все его цифры, кроме нулей, стоящих в начале.
8. Последовательно повторяющаяся группа цифр после запятой в десятичной записи числа называется периодом, а бесконечная десятичная дробь, имеющая такой период в своей записи, называется периодической. Если период начинается сразу после запятой, то дробь называется чистой периодической; если же между запятой м периодом есть другие десятичные знаки, то дробь называется смешанной периодической.
Определение: Числа не являющиеся целыми или дробными называются иррациональными.
Каждое иррациональное число представляется в виде непереодической бесконечной десятичной дробью
Определение: Множество всех конечных и бесконечных десятичных дробей называется множеством действительных чисел: рациональных и иррациональных
12. КВАДРАТНЫЙ ТРЕХЧЛЕН И КВАДРАТНЫЕ УРАВНЕНИЯ. ФОРМУЛА ДЛЯ ВЫЧИСЛЕНИЯ КОРНЕЙ. ТЕОРЕМА ВИЕТА.
I. Квадратный трехчлен раскладывается на множители: ax 2 + bx + c = a ( x – x 1 )( x – x 2 ) , где x1=2a−b+
D x2=2a−b− D , D=b2−4ac в том случае, если D ? 0.Если D < 0, то такое разложение на множители невозможно и квадратный трехчлен ax 2 + bx + c не имеет действительных корней.
Итак, установлено, что если D ? 0, то квадратный трехчлен имеет два корня (при D = 0 они совпадают). Если же D < 0, то трехчлен не имеет действительных корней.
II. Уравнение вида ax2 + bx + c = 0, где, a, b, c - действительные числа, причем a≠0, называют квадратным уравнением. Если a = 1 , то квадратное уравнение называют приведенным; если a≠1, - то неприведенным. Числа a, b, c носят следующие названия a - первый коэффициент, b - второй коэффициент, c - свободный член.
Теорема Виета. Сумма корней приведенного квадратного трехчлена x2 + px + q = 0 равна его второму коэффициенту p с противоположным знаком, а произведение – свободному члену q, т. е. x1 + x2 = – p и x1 x2 = q
Обратная Теорема Виета. Если числа x1 и x2 удовлетворяют соотношениям x1 + x2 = – p и x1 x2 = q, то они удовлетворяют квадратному уравнению x2 + px + q = 0.
Теорема Виета применяется для подбора корней квадратных уравнений. Можно расширить рамки использования этой теоремы, например, для решения систем уравнений. Это сокращает время и упрощает решение системы.
Рассмотрим систему уравнений
x+y=5 x y=6 Если допустить, что x и y – корни некоторого приведенного квадратного уравнения, сумма корней которого равна 5, а их произведение равно 6, то получим совокупность двух систем x=3 y=2 и x=2 y=3Итак, коротко о квадратном уравнении:
13. ГРАФИК КВАДРАТНЫХ ТРЕХЧЛЕНОВ
График функции
при a ≠ 0 называется параболой. Рассмотрим сначала функцию Областью определения этой функции являются все Решив уравнение получим x = 0. Итак, единственный нуль этой функции x = 0. Функция является четной (для любых ось OY является ее осью симметрии.График 2.2.3.1.
График функции y = ax2, a = 1 > 0.