Среднее приращение издержек производства есть D K/ D х. Это приращение издержек производства на единицу приращения количества продукции.
Предел называется предельными издержками производства.
Если обозначить через u(x) выручку от продажи x единиц товара, то и называется предельной выручкой.
С помощью производной можно вычислить приращение функции, соответствующее приращению аргумента. Во многих задачах удобнее вычислять процент прироста (относительное приращение) зависимой переменной, соответствующий проценту прироста независимой переменной. Это приводит нас к понятию эластичности функции (иногда ее называют относительной производной ). Итак, пусть дана функция y = f(x), для которой существует производная y ¢ = f ¢ (x). Эластичностью функции y = f(x) относительно переменной x называют предел
.
Его обозначают E x (y) = x/y f ¢ (x) = .
Эластичность относительно x есть приближенный процентный прирост функции (повышение или понижение), соответствующий приращению независимой переменной на 1%. Экономисты измеряют степень чуткости, или чувствительности, потребителей к изменению цены продукции, используя концепцию ценовой эластичности. Для спроса на некоторые продукты характерна относительная чуткость потребителей к изменениям цен, небольшие изменения в цене приводят к значительным изменениям в количестве покупаемой продукции. Спрос на такие продукты принято называть относительно эластичным или просто эластичным. Что касается других продуктов, потребители относительно нечутки к изменению цен на них, то есть существенное изменение в цене ведет лишь к небольшому изменению в количестве покупок. В таких случаях спрос относительно неэластичен или просто неэластичен. Термин совершенно неэластичный спрос означает крайний случай, когда изменение цены не приводит ни к какому изменению количества спрашиваемой продукции. Примером может служить спрос больных острой формой диабета на инсулин или спрос наркоманов на героин. И наоборот, когда при самом малом снижении цены покупатели увеличивают покупки до предела своих возможностей - тогда мы говорим, что спрос является совершенно эластичным.
19. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ И ЕГО СВОЙСТВА.
Неопределённый интегра́л для фукнции
- это семейство всех первообразных данной функции.
Если функция
где С — произвольная постоянная.
Если
, то и , где - произвольная функция, имеющая непрерывную производную.12. ОСНОВНЫЕ МЕТОДЫ ИНТЕГРИРОВАНИЯ.
1. Метод введения нового аргумента. Если
то
где
— непрерывно дифференцируемая функция.2. Метод разложения. Если
то
3. Метод подстановки. Если
— непрерывна, то, полагаягде
непрерывна вместе со своей производной , получим4. Метод интегрирования по частям. Если
и — некоторые дифференцируемые функции от , то21. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛЛ. ВЫЧИСЛЕНИЕ ПЛОЩАДЕЙ.
Определённый интеграл — аддитивный монотонный нормированный функционал, заданный на множестве пар, первая компонента которых есть интегрируемая функция или функционал, а вторая — область в множестве задания этой функции (функционала).
Данное выше определение интеграла при всей его кажущейся общности в итоге приводит к привычному понимаю определённого интеграла, как площади подграфика функции на отрезке.
Геометрический смысл. Определённый интеграл как площадь фигуры:
Определённый интеграл
численно равен площади фигуры, ограниченной осью абсцисс, прямыми x = a и x = b и графиком функции f(x).Вычисление площадей с помощью интеграла.
1.Площадь фигуры, ограниченной графиком непрерывной отрицательной на промежутке [ a ; b ] функции f (x), осью Ох и прямыми х=а и х= b :
2.Площадь фигуры, ограниченной графиками непрерывных функций f (x),
и прямыми х=а, х= b :3.Площадь фигуры, ограниченной графиками непрерывных функций f (x) и
:4.Площадь фигуры, ограниченной графиками непрерывных функций f (x),
и осью Ох:22. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ В ЭКОНОМИКЕ.
Традиционно практическое приложение интеграла иллюстрируется вычислением площадей различных фигур ,нахождением объемов тел и некоторыми приложениями в науке и технике. Интегральное исчисление дает богатый математический аппарат для моделирования и исследования процессов, происходящих в экономике. Так, в ходе изучения определенного интеграла студент может наглядно познакомиться с методами решения экономических задач, связанных с анализом воздействия конкретных мер государственной политики на благосостояние потребителей и производителей продукции. Приведем несколько примеров, иллюстрирующих приложение определенного интеграла для решения задач
такого типа.
В курсе микроэкономики часто рассматривают так называемые предельные величины , т.е. для данной величины, представляемой некоторой функцией y=f(x) , рассматривают её производную f´(x) .Например, если дана функция издержик С в зависимости от объема q выпускаемого товара С=С(q), о предельные издержки будут задаваться производной этой функции МС=С´(q). Её экономический смысл –это издержки на производство дополнительной единицы выпускаемого товара. Поэтому часто приходится находить функцию издержек по данной функции предельных издержек.
Интересной иллюстрацией возможности применения интегралов для анализа социально- экономического строения общества является так называемая “диаграмма или кривая Джинна” распределения богатства в обществе. Рассмотрим функцию d(z) , которая сообщает , что z –я часть самых бедных людей общества владеет d(z)-й частью всего общественного богатства. Если бы распределение богатства было равномерным , то график функции d(z) шел бы по диагонали квадрата. Поэтому чем больше площади заштрихованной линзы ,тем неравномернее распределено богатство в
обществе. Величина этой площади называется также “коэффициентом Джинни” .Можно придумать много аналогичных характеристик; например ,для оценки распределения заработной платы в фирме или акций среди сотрудников и т.п. Соответствующие функции Джинни наверняка будут довольно сложными и без интегралов не обойтись.