1. МАТЕМАТИКА ДРЕВНИХ ЦИВИЛИЗАЦИЙ
Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Некоторые первобытные племена подсчитывали количество предметов, сопоставляя им различные части тела, главным образом пальцы рук и ног. Наскальный рисунок, сохранившийся до наших времен от каменного века, изображает число 35 в виде серии выстроенных в ряд 35 палочек-пальцев. Первыми существенными успехами в арифметике стали появление понятия числа и изобретение четырех основных действий: сложения, вычитания, умножения и деления. Первые достижения геометрии связаны с такими простыми понятиями, как прямая и окружность.
Вавилония. Источником наших знаний о вавилонской цивилизации служат хорошо сохранившиеся глиняные таблички, покрытые т.н. клинописными текстами, которые датируются от 2000 до н.э. и до 300 н.э. Математика на клинописных табличках в основном была связана с ведением хозяйства. Арифметика и нехитрая алгебра использовались при обмене денег и расчетах за товары, вычислении простых и сложных процентов, Многочисленные арифметические и геометрические задачи возникали в связи со строительством . Очень важной задачей математики был расчет календаря, поскольку календарь использовался для определения сроков сельскохозяйственных работ и религиозных праздников. Деление окружности на 360, а градуса и минуты на 60 частей берут начало в вавилонской астрономии.
Вавилоняне составили таблицы обратных чисел (которые использовались при выполнении деления), таблицы квадратов и квадратных корней, а также таблицы кубов и кубических корней.
В геометрии вавилоняне знали о таких соотношениях, например, как пропорциональность соответствующих сторон подобных треугольников. Им была известна теорема Пифагора и то, что угол, вписанный в полуокружность – прямой. Они располагали также правилами вычисления площадей простых плоских фигурю.Числоpвавилоняне считали равным 3.
Египет. Наше знание древнеегипетской математики основано главным образом на двух папирусах, датируемых примерно 1700 до н.э. Излагаемые в этих папирусах математические сведения восходят к еще более раннему периоду – ок. 3500 до н.э. Египтяне использовали математику, чтобы вычислять вес тел, площади посевов и объемы зернохранилищ, размеры податей и количество камней, требуемое для возведения тех или иных сооружений.
Но главной областью применения математики была астрономия, точнее расчеты, связанные с календарем. Однако уровень развития астрономии в Древнем Египте намного уступал уровню ее развития в Вавилоне.
Древнеегипетская письменность основывалась на иероглифах. Система счисления того периода также уступала вавилонской. Египтяне пользовались непозиционной десятичной системой, в которой числа от 1 до 9 обозначались соответствующим числом вертикальных черточек, а для последовательных степеней числа 10 вводились индивидуальные символы. Последовательно комбинируя эти символы, можно было записать любое число. Скоро возникла новая числовая система. Для каждого из чисел от 1 до 9 и для каждого из первых девяти кратных чисел 10, 100 и т.д. использовался специальный опознавательный символ. Дроби записывались в виде суммы дробей с числителем, равным единице. С такими дробями египтяне производили все четыре арифметические операции
Геометрия у египтян сводилась к вычислениям площадей прямоугольников, треугольников, трапеций, круга, а также формулам вычисления объемов некоторых тел. Надо сказать, что математика, которую египтяне использовали при строительстве пирамид, была простой и примитивной.
Задачи и решения, приведенные в папирусах, сформулированы чисто рецептурно, без каких бы то ни было объяснений. Египтяне имели дело только с простейшими типами квадратных уравнений и арифметической и геометрической прогрессиями. Ни вавилонская, ни египетская математики не располагали общими методами.
Хотя майя, жившие в Центральной Америке, не оказали влияния на развитие математики, их достижения, относящиеся примерно к 4 в., заслуживают внимания. Майя, по-видимому, первыми использовали специальный символ для обозначения нуля в своей двадцатиричной системе. Позиционные обозначения начинались с числа 20, а числа записывались по вертикали сверху вниз..
Классическая Греция. С точки зрения 20 в. родоначальниками математики явились греки классического периода (6–4 вв. до н.э.). Математика, существовавшая в более ранний период, была набором эмпирических заключений.
Настаивание греков на дедуктивном доказательстве было экстраординарным шагом. Ни одна другая цивилизация не дошла до идеи получения заключений исключительно на основе дедуктивного рассуждения, исходящего из явно сформулированных аксиом. . Математика делилась на арифметику – теоретический аспект и логистику – вычислительный аспект. Заниматься логистикой предоставляли свободнорожденным низших классов и рабам.
Греческая система счисления была основана на использовании букв алфавита. В более поздней ионической системе счисления для обозначения чисел использовались 24 буквы греческого алфавита и три архаические буквы.
Дедуктивный характер греческой математики полностью сформировался ко времени Платона и Аристотеля.
Эллинистическая и римская эпоха. С 3 века до н. э. на протяжении семи столетий основным центром научных и особенно математических исследований являлась Александрия. Здесь, в обстановке объединения различных мировых культур, больших государственных и строительных задач и невиданного ранее по своей широте государственного покровительства науке, греческая математика достигла своего высшего расцвета. Несмотря на распространение греческой образованности и научных интересов во всём эллинистическом и римском мире, Александрия с её "музеем", являвшимся первым научно-исследовательским институтом в современном смысле слова, и библиотеками обладала столь большой притягательной силой, что почти все крупнейшие учёные стекались сюда. Из упоминающихся ниже математиков лишь Архимед остался верным родным Сиракузам. Наибольшей напряжённостью математического творчества отличается первый век александрийской эпохи (3 век до н. э.). Этому веку принадлежат Евклид,Архимед,Эратосфен и Апполоний Пергский.
Цифры в древнем Китае обозначались специальными иероглифами, которые появились во II тысячелетии до н. э., и начертание их окончательно установилось к III веку до н. э. Эти иероглифы применяются и в настоящее время. Китайский способ записи чисел изначально был мультипликативным. Например, запись числа 1946, используя вместо иероглифов римские цифры, можно условно представить как 1М9С4Х6. Однако на практике расчёты выполнялись на счётной доске, где запись чисел была иной — позиционной, как в Индии, и, в отличие от вавилонян, десятичной.[7]
Вычисления производились на специальной счётной доске суаньпань (см. на фотографии), по принципу использования аналогичной русским счётам. Нуль сначала обозначался пустым местом, специальный иероглиф появился около XII века н. э. Для запоминания таблицы умножения существовала специальная песня, которую ученики заучивали наизусть.
Около 500 г. н. э. неизвестный нам великий индийский математик изобрёл новую систему записи чисел — десятичную позиционную систему. В ней выполнение арифметических действий оказалось неизмеримо проще, чем в старых, с неуклюжими буквенными кодами, как у греков, или шестидесятиричных, как у вавилонян. В дальнейшем индийцы использовали счётные доски, приспособленные к позиционной записи. Они разработали полные алгоритмы всех арифметических операций, включая извлечение квадратных и кубических корней.
К V—VI векам относятся труды Ариабхаты, выдающегося индийского математика и астронома. В его труде «Ариабхатиам» встречается множество решений вычислительных задач. В VII веке работал другой известный индийский математик и астроном, Брахмагупта. Начиная с Брахмагупты, индийские математики свободно обращаются с отрицательными числами, трактуя их как долг.
Наибольшего успеха средневековые индийские математики добились в области теории чисел и численных методов. Индийцы далеко продвинулись в алгебре; их символика богаче, чем у Диофанта, хотя несколько громоздка (засорена словами). Геометрия вызывала у индийцев меньший интерес. Доказательства теорем состояли из чертежа и слова «смотри». Формулы для площадей и объёмов, а также тригонометрию они, скорее всего, унаследовали от греков.
Математика Востока, в отличие от греческой, всегда носила более практичный характер. Соответственно наибольшее значение имели вычислительные и измерительные аспекты. Основными областями применения математики были торговля, ремесло, строительство, география, астрономия и астрология, механика, оптика.
В IX веке жил Ал-Хорезми — сын зороастрийского жреца, прозванный за это аль-Маджуси (маг). Изучив индийские и греческие знания, он написал книгу «Об индийском счёте», способствовавший популяризации позиционной системы во всём Халифате, вплоть до Испании. В XII веке эта книга переводится на латинский, от имени её автора происходит наше слово «алгоритм» (впервые в близком смысле использовано Лейбницем). Другое сочинение ал-Хорезми, «Краткая книга об исчислении аль-джабра и аль-мукабалы», оказало большое влияние на европейскую науку и породило ещё один современный термин «алгебра».
Исламские математики уделяли много внимания не только алгебре, но также геометрии и тригонометрии (в основном для астрономических приложений). Насир ад-Дин ат-Туси (XIII век) и Ал-Каши (XV век) опубликовали выдающиеся работы в этих областях.
2. МАТЕМАТИКА ДРЕВНЕЙ ГРЕЦИИ
Понятие древнегреческая математика охватывает достижения грекоязычных математиков, живших в период между VI веком до н. э. и V веком н. э.
Математика родилась в Греции. Это, конечно, преувеличение, но не слишком большое. В странах-современниках Эллады математика использовалась либо для обыденных нужд (подсчёты, измерения), либо, наоборот, для магических ритуалов, имевших целью выяснить волю богов (астрология, нумерология и т. п.). Греки подошли к делу с другой стороны: они выдвинули тезис «Числа правят миром». Или, как сформулировали эту же мысль два тысячелетия спустя: «Природа разговаривает с нами на языке математики».