Большое значение остаточной дисперсии может быть обусловлено неверным выбором функции или отсутствием статистической взаимосвязи между зависимой и объясняющими переменными, включенными в уравнение регрессии.
3). На практике часто используют величину стандартного отклонения от линии регрессии, называемую также стандартной ошибкой регрессии или стандартной ошибкой оценивания:
(12)
Рассмотренные показатели качества линейной регрессионной модели являются абсолютными, поскольку размер дисперсии напрямую зависит от показателя y.
Среди относительных показателей качества регрессии основным является коэффициент детерминации.
Коэффициент детерминации вычисляют как отношение сумм квадратов:
(13) или . (14)Коэффициент детерминации показывает долю объясненной уравнением регрессии дисперсии зависимой переменной и выражается в долях.
Коэффициент детерминации изменяется от 0 до 1. Высокое значение R2 говорит о том, что включенные в уравнение регрессии факторы в основном объясняют вариацию значений зависимого признака. Если же значение R2 невелико, то можно сделать вывод о том, что факторы, оказывающие существенное влияние на результирующий показатель, в уравнение регрессии не вошли.
Однако существует ряд ограничений, сужающих возможности применения данного показателя для анализа.
Прежде всего, коэффициент детерминации позволяет проводить сравнение различных линейных по параметрам регрессионных уравнений для одной и той же зависимой переменной.
Второе ограничение связано с количеством объясняющих переменных в модели. Сопоставимые уравнения регрессии зависимой переменной должны включать одинаковое число факторов и могут отличаться лишь составом независимых переменных. Ограничение по количеству объясняющих переменных обусловлено тем, что R2 является неубывающей функцией от числа включенных в регрессию факторов. Поэтому наряду с традиционным часто используют скорректированный коэффициент детерминации, позволяющий проводить сравнение линейных регрессионных уравнений с разным подмножеством факторов:
, (15)
где R2 - базовый коэффициент детерминации; n - объем выборки; q - число факторов в факторном наборе.
Еще одно требование связано с наличием свободного члена. Константа должна входить или отсутствовать одновременно во всех сравниваемых уравнениях.
Квадратный корень из R2 для линейной модели
(16)
представляет собой коэффициент множественной корреляции и характеризует тесноту связи совокупности факторов, включенных в уравнение регрессии, с исследуемым показателем.
Кроме того, дополнять оценку качества регрессионного уравнения следует проверкой значимости как параметров регрессии, так и самого регрессионного уравнения.
1). Проверка значимости параметров позволяет установить существенность влияния отдельных факторов на зависимую переменную.
Проверка значимости параметра предполагает проведение процедуры проверки гипотезы о том, что фактор x j не оказывает существенного влияния на зависимую переменную. Нулевую гипотезу относительно параметра модели формулируют следующим образом:
.
Альтернативная ей гипотеза утверждает, что β j значимо отличается от нуля:
.
Статистика для проверки сформулированной гипотезы принимает вид:
. (17)
Если верна нулевая гипотеза, то статистика (17) имеет распределение Стьюдента. Расчетное значение t-статистики сравнивают с квантилью t-распределения t α, ν, которая имеет параметры: ν - число степеней свободы,
ν = n-p-1, p - число объясняющих переменных в уравнении регрессии; α - уровень значимости.
Величина α определяет надежность статистических выводов. Чем выше требования к надежности результатов, тем меньше должна быть величина α.
Если расчетное значение t-статистики попадает в критическую для проверяемой гипотезы область | t | > t α, ν, то параметр β j значим, следовательно, фактор x j оказывает существенный вклад в вариацию зависимого признака. В противном случае, если | t | < t α, ν, то влияние фактора несущественно и он может быть исключен из уравнения регрессии.
2). Целью поверки гипотезы о значимости уравнения регрессии является определение существенности влияния на зависимую переменную всех или хотя бы некоторых независимых переменных, включенных в регрессионную модель.
Нулевая гипотеза состоит в том, что все переменные x 1, x 2, …, x p не оказывают существенного влияния на зависимую переменную:
.
Альтернативная гипотеза утверждает, что, как минимум, одна из объясняющих переменных оказывает существенное влияние на объясняемую переменную и должна быть включена в регрессионную модель. Гипотеза может быть записана следующим образом:
.
Для проверки нулевой гипотезы используют F-критерий:
. (18)
Если верна нулевая гипотеза, то (18) имеет распределение с числом степеней свободы числителя ν 1 = p и числом степеней свободы знаменателя ν 2 = n - p - 1. Решение о значимости F-критерия принимают, задав некоторый уровень значимости α и определив соответствующую параметрам α, ν 1 и ν 2 квантиль распределения F α, ν 1, ν 2. Если F < F α, ν 1, ν 2, то считают, что нет оснований отвергать нулевую гипотезу, ни одна из включенных в уравнение регрессии переменных не оказывает существенного влияния на y. Напротив, когда F > F α, ν 1, ν 2, то делают заключение, что выборочные данные не подтверждают основную гипотезу, все или некоторые объясняющие переменные существенно влияют на зависимую переменную.
Все рассмотренные показатели качества регрессионного уравнения определяют дальнейшее поведение исследователя: будет он пересматривать построенную модель, внося коррективы в состав факторного набора, или же остановится на достигнутых результатах[13].
§ 2. Теоретическая и практическая реализация АРТ-
моделирования
Как уже было отмечено, построение модели арбитражного ценообразования, используемой для определения стоимости ценных бумаг, сопряжено с субъективным отношением инвестора к влияющим факторам: какие факторы выбрать, каким должен быть критерий включения фактора в модель, – все эти проблемы инвестор решает самостоятельно.
А потому для построения модели арбитражного ценообразования воспользуемся универсальным алгоритмом, предложенным А. А. Шабалиным[14], который, на мой взгляд, позволяет наиболее полно сохранить все преимущества модели и учитывает ее недостатки.
1. Универсальный алгоритм построения модели АРТ
Модель АРТ в общем виде выглядит следующим образом:
(4)
Универсальный алгоритм ее построения содержит 7 основных этапов:
1. Определение всей совокупности факторов, возможно влияющих на цену исследуемого актива, и разделение их на группы методом агрегирования; определение количества показателей в каждой из групп. Основными группами показателей являются: финансовые показатели фирмы, макроэкономические индикаторы страны, отраслевые индикаторы, мировые фондовые индексы, сырьевые цены, политические и корпоративные события, а также финансовые показатели фирмы и т.д.
Одной из наиболее важных групп является группа финансовых показателей фирмы, т. к. они напрямую отражают стоимость активов: чем лучше финансовое состояние фирмы, тем больше ее акции могут принести дивидендов, а следовательно, тем дороже будут и сами акции.
Далее по значимости можно выделить макроэкономические индикаторы страны, которые позволяют судить о тенденциях развития компании в России: повышение инвестиционной привлекательности страны и снижение странового риска в большей части происходит на основе макроэкономических индикаторов, что, в свою очередь повышает капитализацию большинства организаций.
В качестве следующей группы факторов часто выделяют мировые фондовые индексы. Россия развивается взаимосвязано с другими странами, существует определенная корреляционная связь в тенденциях развития. Охарактеризовать влияние мировых фондовых индексов на российский рынок ценных бумаг можно "настроением" иностранных инвесторов, которые принимают активное участие в торгах на российском рынке, как через ADR (расписки на владение ценными бумагами), так и на рынке РТС.