Составим гамильтониан Н:
; .Оптимальному управлению соответствует максимум функции Гамильтона в заданной области возможных управлений. Причем этот максимум равен нулю.
То есть нужно добиться максимума этой функции, меняя u1. Это и будет оптимальное управление.
Для функций ψi тоже получим сопряженные уравнения, которые имеют вид
:следовательно производная равна нулю;
– аналогично, так как функция не зависит от х1.Итак, нужно найти максимум гамильтониана:
Функция переключения:
Используя для вычислений Mathcad, получим оптимальное управление:
Таким образом оказалось, что оптимальное управление должно осуществляться на предельных ресурсах. То есть либо двигатель должен быть совсем выключен (при Ku<0), либо включен на максимальную мощность (при Ku>0).
Посмотрим, как меняется функция переключения Кu во времени:
;Для определения ψ1 и ψ2 решаем сопряженные уравнения:
, следовательно, ψ1 = const, обозначим ψ1=с1. , следовательно, , где c2 = const.Итак,
Масса КА всегда положительна, а с=3000 = const – величина постоянная, поэтому производная
имеет всегда постоянный (один и тот же) знак. То есть величина Ku либо всё время монотонно возрастает, либо всё время монотонно убывает. А это означает, что она может пройти через ноль только один раз.Рассмотрим четыре возможных случая:
а) Ku>0 для всех
;б) Ku<0 для всех
;в) Ku>0 для
, Ku<0 для ;г) Ku<0 для
, Ku>0 для .В случаях б) (когда двигатель КА выключен на всем протяжении посадки) и в) (когда двигатель включен на максимальную мощность до какого-то момента времени t=t*, а затем полет происходит с выключенным двигателем до самой посадки) – говорить о мягкой посадке не приходится. Эти варианты означают падение КА на планету. Поэтому оптимальными (и вообще допустимыми) их считать нельзя.
Следовательно, остаются два реализуемых варианта – а) и г). И оптимальное управление предполагает либо всё время включенный на максимальную мощность двигатель, либо полет с выключенным двигателем до какого-то момента t=t*, а затем полет с двигателем, включенным на максимальную мощность до момента посадки. Естественно, что во втором случае (г) расход топлива меньше, так как часть пути проделывается с выключенным двигателем.
Поэтому оптимальным управлением в данной ситуации можно считать полет с выключенным двигателем, затем происходит включение двигателя и полет продолжается с двигателем, включенным на максимальную мощность.
Итак, оптимальному управлению соответствует
На первом участке полета, на котором u1=0:
Рассмотрим второй участок полета u1=7,083:
Зададимся условием, что при t=t* (в момент включения двигателя):
; ; .На отрезке полета со включенным двигателем:
;так как
, запишем: .Теперь, зная х3, можно выразить х2: