Смекни!
smekni.com

Построение математической модели оптимального управления обеспечивающего мягкую посадку при (стр. 1 из 3)

Исходные данные к курсовому проекту

Рассматривается последний этап посадки космического аппарата (КА) на планету. При построении математической модели предположим:

1) посадка осуществляется по нормали к поверхности планеты, планета неподвижна и в районе посадки плоская;

2) на КА действуют сила тяжести G=mg, причем g=const и сила тяги

, где с=const, а β – секундный расход массы m,
;

3) аэродинамические силы отсутствуют.

Уравнения движения КА могут быть представлены в виде:

;
;
, где h – текущая высота;

или в нормальной форме:

;
;
;
.

Здесь введены обозначения:

;
;
;
;
.

Граничные условия имеют вид:

;
;
;
;
,

причем Т заранее неизвестно. Требуется найти программу управления u*(t), обеспечивающую мягкую посадку при минимальном расходе топлива, то есть

.

Исходные данные для расчетов

Начальная масса КА
, кг.
Начальная высота
, км.
Начальная скорость
, км/с
Отношение силы тяги к начальной массе
, м/с2
500 190 2,65 42,5
=190000 м.
=2650 м/с

Ускорение силы тяжести для планеты g=1,62 м/с2, величина с=3000 м/с.


Задание к курсовому проекту

1.) Составить гамильтониан Н, воспользовавшись необходимыми условиями оптимальности для задачи Майера.

2.) Из условия максимизации Н по u найти оптимальное управление.

3.) Получить каноническую систему уравнений и в результате прийти к краевой задаче, для которой в момент t=0 заданы компоненты x0, x1, x2, а в момент t=T‑компоненты x1, x2, ψ0.

4.) Из условия Н(Т)=0 получить соотношение для определения неизвестного времени Т.

5.) Произвести анализ необходимых условий оптимальности, начав с исследования возможности существования особого вырожденного управления, то есть случая, когда функция переключения

.

Доказать, что Кu не может обратиться в нуль на конечном интервале времени и, следовательно, особого управления в данной задаче не существует.

Показать, что Кu есть монотонная функция t.

Рассмотреть четыре возможных случая:

а) Ku>0 для всех

;

б) Ku<0 для всех

;

в) Ku>0 для

, Ku<0 для
;

г) Ku<0 для

, Ku>0 для
.

Показать, в каких случаях (из физических соображений) мягкая посадка невозможна, в каком из реализуемых случаев расход топлива меньше.

Получить программу оптимального управления, когда до некоторого момента t1 управление отсутствует u*=0, а начиная с t=t1, управление равно своему максимальному значению u*=umax, что соответствует минимальному расходу топлива.

6.) Решить каноническую систему уравнений, рассматривая ее для случаев, когда

и управление u*=0, и когда
, u*=umax.

Приравнивая х1(Т) и х2(Т) нулю, получить два уравнения относительно t1 и Т. Таким образом, краевую задачу свести к системе, состоящей из двух нелинейных уравнений относительно двух неизвестных t1, Т. Составить программу расчета. Получив решение этой системы, решить полностью исходную задачу программирования оптимального управления мягкой посадкой КА на планету. В заключение следует построить фазовую траекторию спуска КА и определить конечную массу m(Т).


Выполнение задания курсового проекта

Нам известно, что

, где с – сила тяги двигателя,

m – масса космического аппарата;

– ускорение аппарата.

То есть, масса · ускорение = сумме сил, действующих на аппарат.

β – секундный расход массы m:

.

Расход массы обеспечивает силу тяги двигателя (P=c·β), ее можно менять в пределах

.

можно найти из исходных данных – выразив из отношения силы тяги к начальной массе Pmax/m(0):

;

;

кг/с.

Наш критерий оптимизации

. Введем принятые в исходных данных обозначения:

;
.

Начальный момент времени t=0, конечный момент времени – момент посадки КА (момент столкновения с планетой) t=T.

;

Тогда критерий оптимизации:

;

. (Здесь
.)

Теперь необходимо написать уравнение состояния системы. Для этого нужно ввести переменные состояния и входную переменную.

Порядок дифференциального уравнения n=3, отсюда 3 уравнения состояния:

;

;

.

Выберем управление:

;

Подставляем уравнения состояния, получим:

так как

и
, отсюда

;

;

.

Критерий оптимизации:

.

Введем переменные х0 и хn+1 (то есть х4).

, где t – текущее время.

.

Тогда основные уравнения состояния: