переходя к пределу, получаем
Таким образом, число е заключено между числами 2,5 и 3. Если взять большее количество членов ряда, то можно получить более точную оценку значения числа е.
Можно показать, что число е иррациональное и его значение равно 2,71828…
Аналогично можно показать, что
, расширив требования к х до любого действительного числа:Предположим:
Найдем
Число е является основанием натурального логарифма.
Выше представлен график функции y = lnx.
Связь натурального и десятичного логарифмов.
Пусть х = 10у, тогда lnx = ln10y , следовательно lnx = yln10
у =
, где М = 1/ln10 » 0,43429…- модуль перехода.Предел функции в точке.
yf(x)A + e
A
A - e
0 a - Daa + Dx
Пусть функция f(x) определена в некоторой окрестности точки х = а (т.е. в самой точке х = а функция может быть и не определена)
Определение. Число А называется пределом функции f(x) при х®а, если для любого e>0 существует такое число D>0, что для всех х таких, что
0 < ïx - aï < D
верно неравенство ïf(x) - Aï< e.
То же определение может быть записано в другом виде:
Если а - D < x < a + D, x¹a, то верно неравенство А - e < f(x) < A + e.
Запись предела функции в точке:
Определение. Если f(x) ®A1 при х ® а только при x < a, то
- называется пределом функции f(x) в точке х = а слева, а если f(x) ®A2 при х ® а только при x > a, то называется пределом функции f(x) в точке х = а справа. уf(x)
А2
А1
0 ax
Приведенное выше определение относится к случаю, когда функция f(x) не определена в самой точке х = а, но определена в некоторой сколь угодно малой окрестности этой точки.
Пределы А1 и А2 называются также односторонними пределами функции f(x) в точке х = а. Также говорят, что А – конечный предел функции f(x).
Предел функции при стремлении аргумента к бесконечности.
Определение. Число А называется пределом функции f(x) при х®¥, если для любого числа e>0 существует такое число М>0, что для всех х, ïхï>Mвыполняется неравенство
При этом предполагается, что функция f(x) определена в окрестности бесконечности.
Записывают:
Графически можно представить:
yy
AA
0 0
xx
yyAA
0 0
xx
Аналогично можно определить пределы
для любого х>Mи для любого х<M.Теорема 1.
, где С = const.Следующие теоремы справедливы при предположении, что функции f(x) и g(x) имеют конечные пределы при х®а.
Теорема 2.
Доказательство этой теоремы будет приведено ниже.
Теорема 3.
Следствие.
Теорема 4.
приТеорема 5.Если f(x)>0 вблизи точки х = а и , то А>0.
Аналогично определяется знак предела при f(x) < 0, f(x) ³ 0, f(x) £ 0.
Теорема 6.Если g(x) £f(x) £u(x) вблизи точки х = а и , то и .
Определение. Функция f(x) называется ограниченной вблизи точки х = а, если существует такое число М>0, что ïf(x)ï<Mвблизи точки х = а.
Теорема 7.Если функция f(x) имеет конечный предел при х®а, то она ограничена вблизи точки х = а.
Доказательство. Пусть
, т.е. , тогда или , т.е. где М = e + ïАïТеорема доказана.
Определение. Функция f(x) называется бесконечно малой при х®а, где а может быть числом или одной из величин ¥, +¥ или -¥, если
.Бесконечно малой функция может быть только если указать к какому числу стремится аргумент х. При различных значениях а функция может быть бесконечно малой или нет.
Пример. Функция f(x) = xn является бесконечно малой при х®0 и не является бесконечно малой при х®1, т.к.
.Теорема.Для того, чтобы функция f(x) при х®а имела предел, равный А, необходимо и достаточно, чтобы вблизи точки х = а выполнялось условие
f(x) = A + a(x),
где a(х) – бесконечно малая при х ® а (a(х)®0 при х ® а).
Свойства бесконечно малых функций:
1) Сумма фиксированного числа бесконечно малых функций при х®а тоже бесконечно малая функция при х®а.
2) Произведение фиксированного числа бесконечно малых функций при х®а тоже бесконечно малая функция при х®а.
3) Произведение бесконечно малой функции на функцию, ограниченную вблизи точки х = а является бесконечно малой функцией при х®а.
4) Частное от деления бесконечно малой функции на функцию, предел которой не равен нулю есть величина бесконечно малая.
Используя понятие бесконечно малых функций, приведем доказательство некоторых теорем о пределах, приведенных выше.
Доказательство теоремы 2. Представим f(x) = A + a(x), g(x) = B + b(x), где
, тогдаf(x) ± g(x) = (A + B) + a(x) + b(x)
A + B = const, a(х) + b(х) – бесконечно малая, значит
Теорема доказана.
Доказательство теоремы 3. Представим f(x) = A + a(x), g(x) = B + b(x), где
, тогдаA×B = const, a(х) и b(х) – бесконечно малые, значит
Теорема доказана.
бесконечно малыми.
Определение. Предел функции f(x) при х®а, где а- число, равен бесконечности, если для любого числа М>0 существует такое число D>0, что неравенство