Смекни!
smekni.com

Математический анализ 2 (стр. 2 из 4)

В трёхтомном интегральном исчислении Эйлер трактует вводит понятие интеграла так:

Та функция, дифференциал которой = Xdx, называется его интегралом и обозначается знаком S, поставленным спереди.[21]

В целом же эта часть трактата Эйлера посвящена более общей с современной точки зрения задаче об интегрировании дифференциальных уравнений. При этом Эйлер находит ряд интегралов и дифференциальных уравнений, которые приводят к новым функциям, напр., Γ-функции, эллиптические функции и т. д. Строгое доказательство их неэлементарности было дано в 1830-х годах Якоби для эллиптических функций и Лиувиллем (см. элементарные функции).

Лагранж

Следующим крупным произведением, сыгравшим значительную роль в развитии концепции анализа, явилась Теория аналитических функций[22] Лагранжа и обширный пересказ работ Лагранжа, выполненный Лакруа[23] в несколько эклектической манере.Желая избавиться от бесконечно малого вовсе, Лагранж обратил связь между производными и рядом Тейлора. Под аналитической функцией Лагранж понимал произвольную функцию, исследуемую методами анализа. Саму функцию он обозначил как f(x), дав графический способ записи зависимости — ранее же Эйлер обходился одними переменными. Для применения методов анализа по мнению Лагранжа необходимо, чтобы функция разлагалась в рядкоэффициенты которого будут новыми функциями x. Остаётся назвать p производной (дифференциальным коэффициентом) и обозначить его как f'(x). Таким образом, понятие производной вводится на второй странице трактата и без помощи бесконечно малых. Остаётся заметить, чтопоэтому коэффициент q является удвоенной производной производной f(x), то есть и т. д.[24]

Такой подход к трактовке понятия производной используется в современной алгебре и послужил основой для создания теории аналитических функций Вейерштрасса.

Лагранж оперировал такими рядами как формальными и получил ряд замечательных теорем. В частности, впервые и вполне строго доказал разрешимость начальной задачи для обыкновенных дифференциальных уравнений в формальных степенных рядах.[25]

Вопрос об оценке точности приближений, доставляемых частными суммами ряда Тейлора, впервые был поставлен именно Лагранжем: в конце Теории аналитических функций он вывел то, что теперь называют формулой Тейлора с остаточным членом в форме Лагранжа.[26] Однако, в противоположность современным авторам, Лагранж не видел нужды в употреблении этого результата для обоснования сходимости ряда Тейлора.

Вопрос о том, действительно ли функции, употребимые в анализе, могут быть разложены в степенной ряд, впоследствии стал предметом дискуссии. Конечно, Лагранжу было известно, что в некоторых точках элементарные функции могут не разлагаться в степенной ряд, однако в этих точка они и недифференцируемы ни в каком смысле. Коши в своём Алгебраическом анализе привёл в качестве контрпримера функцию доопределённую нулём в нуле. Эта функция всюду гладкая на вещественной оси и в нуле имеет нулевой ряд Маклорена, который, следовательно, не сходится к значению f(x). Против этого примера Пуассон возразил, что Лагранж определял функцию как единое аналитическое выражение, в примере Коши же функция задана по разному в нуле, и при . Лишь в конце XIX века Прингсхейм[27] доказал, что существует бесконечно дифференцируемая функция, заданная единым выражением, ряд Маклорена для которой расходится. Пример такой функцией доставляет выражение

Дальнешее развитие

В XVIII веке были разработаны и практически применены такие разделы анализа, как вариационное исчисление, обыкновенные дифференциальные уравнения и дифференциальные уравнения в частных производных, преобразования Фурье и производящие функции. На фундаменте анализа возникла математическая физика, аналитические методы глубоко проникли в геометрию и даже в теорию чисел.

В XIX веке Коши первым дал анализу твёрдое логическое обоснование, введя понятие предела последовательности, он же открыл новую страницу комплексного анализа. Пуассон, Лиувилль, Фурье и другие изучали дифференциальные уравнения в частных производных и гармонический анализ.

В последней трети XIX века Вейерштрасс произвёл арифметизацию анализа, полагая геометрическое обоснование недостаточным, и предложил классическое определение предела через ε-δ-язык. Он же создал первую строгую теорию множества вещественных чисел. В это же время попытки усовершенствования теоремы об интегрируемости по Риману привели к созданию классификации разрывности вещественных функций. Также были открыты «патологические» примеры (нигде не дифференцируемые непрерывные функции, заполняющие пространство кривые). В связи с этим Жордан разработал теорию меры, а Кантор — теорию множеств, и в начале XX века математический анализ был формализован с их помощью. Другим важным событием XX века стала разработка нестандартного анализа как альтернативного подхода к обоснованию анализа.

Если задана функция y(x), то это означает, что любому допустимому значению х сопоставлено значение у. Но нередко оказывается, что нахождение этого значения очень трудоёмко. Например, у(х) может быть определено как решение сложной задачи, в которой х играет роль параметра или у(х) измеряется в дорогостоящем эксперименте. При этом можно вычислить небольшую таблицу значений функции, но прямое нахождение функции при большом числе значений аргумента будет практически невозможно. Функция у(х) может участвовать в каких-либо физико-технических или чисто математических расчётах, где её приходится многократно вычислять. В этом случае выгодно заменить функцию у(х) приближённой формулой, то есть подобрать некоторую функцию j(х), которая близка в некотором смысле к у(х) и просто вычисляется. Затем при всех значениях аргумента полагают у(х)»j(х).

Большая часть классического численного анализа основывается на приближении многочленами, так как с ними легко работать. Однако для многих целей используются и другие классы функций.

Выбрав узловые точки и класс приближающих функций, мы должны ещё выбрать одну определённую функцию из этого класса посредством некоторого критерия — некоторой меры приближения или «согласия». Прежде чем начать вычисления, мы должны решить также, какую точность мы хотим иметь в ответе и какой критерий мы изберём для измерения этой точности.

Всё изложенное можно сформулировать в виде четырёх вопросов:

Какие узлы мы будем использовать?

Какой класс приближающих функций мы будем использовать?

Какой критерий согласия мы применим?

Какую точность мы хотим?

Существуют 3 класса или группы функций, широко применяемых в численном анализе. Первая группа включает в себя линейные комбинации функций 1, х, х2, …, хn, что совпадает с классом всех многочленов степени n (или меньше). Второй класс образуют функции cos aix, sin aix. Этот класс имеет отношение к рядам Фурье и интегралу Фурье. Третья группа образуется функциями e-az. Эти функции встречаются в реальных ситуациях. К ним, например, приводят задачи накопления и распада.

Что касается критерия согласия, то классическим критерием согласия является «точное совпадение в узловых точках». Этот критерий имеет преимущество простоты теории и выполнения вычислений, но также неудобство из-за игнорирования шума (погрешности, возникающей при измерении или вычислении значений в узловых точках). Другой относительно хороший критерий — это «наименьшие квадраты». Он означает, что сумма квадратов отклонений в узловых точках должна быть наименьшей возможной или, другими словами, минимизирована. Этот критерий использует ошибочную информацию, чтобы получить некоторое сглаживание шума. Третий критерий связывается с именем Чебышева. Основная идея его состоит в том, чтобы уменьшить максимальное отклонение до минимума. Очевидно, возможны и другие критерии.

Более конкретно ответить на поставленные 4 вопроса можно лишь исходя из условий и цели каждой отдельной задачи.

Интерполяция многочленами

Цель задачи о приближении (интерполяции): данную функцию у(х) требуется приблизительно заменить некоторой функцией j(х), свойства которой нам известны так, чтобы отклонение в заданной области было наименьшим. интерполяционные формулы применяются, прежде всего, при замене графически заданной функции аналитической, а также для интерполяции в таблицах.

Методы интерполяции Лагранжа и Ньютона

Один из подходов к задаче интерполяции — метод Лагранжа. Основная идея этого метода состоит в том, чтобы прежде всего найти многочлен, который принимает значение 1 в одной узловой точке и 0 во всех других. Легко видеть, что функція является требуемым многочленом степени n; он равен 1, если x=xj и 0, когда x=xi, i¹j. Многочлен Lj(x)×yj принимает значения yi в i-й узловой точке и равен 0 во всех других узлах. Из этого следует, что есть многочлен степени n, проходящий через n+1 точку (xi, yi).

Другой подход — метод Ньютона (метод разделённых разностей). Этот метод позволяет получить аппроксимирующие значения функции без построения в явном виде аппроксимирующего полинома. В результате получаем формулу для полинома Pn, аппроксимирующую функцию f(x):

P(x)=P(x0)+(x-x0)P(x0,x1)+(x-x0)(x-x1)P(x0,x1,x2)+…+

(x-x0)(x-x1)…(x-xn)P(x0,x1,…,xn);

— разделённая разность 1-го порядка;

— разделённая разность 2-го порядка и т.д.

Значения Pn(x) в узлах совпадают со значениями f(x)

Фактически формулы Лагранжа и Ньютона порождают один и тот же полином, разница только в алгоритме его построения.

Сплайн-аппроксимация

Другой метод аппроксимации — сплайн-аппроксимация — отличается от полиномиальной аппроксимации Лагранжем и Ньютоном. Сплайном называется функция, которая вместе с несколькими производными непрерывна на отрезке [a, b], а на каждом частном интервале этого отрезка [xi, xi+1] в отдельности являются некоторым многочленом невысокой степени. В настоящее время применяют кубический сплайн, то есть на каждом локальном интервале функция приближается к полиному 3-го порядка. Трудности такой аппроксимации связаны с низкой степенью полинома, поэтому сплайн плохо аппроксимируется с большой первой производной. Сплайновая интерполяция напоминает лагранжевую тем, что требует только значения в узлах, но не её производных.