Находим:
Если
, то из предыдущих равенств получаем:Решив полученное уравнение, получим:
.Выполненные вычисления представляют возможность предположить, что корнями уравнения, принадлежащими отрезку
, являются , и .Непосредственная проверка подтверждает эту гипотезу. Таким образом, доказано, что корнями уравнения являются только целые числа
, .Пример Решите уравнение .
Решение. Найдём основной период уравнения. У функции
основной период равен . Основной период функции равен . Наименьшее общее кратное чисел и равно . Поэтому основной период уравнения равен . Пусть .Очевидно,
является решением уравнения. На интервале . Функция отрицательна. Поэтому другие корни уравнения следует искать только на интервалаx и .При помоши микрокалькулятора сначала найдем приближенные значения корней уравнения. Для этого составляем таблицу значений функции
на интервалах и ; т. е. на интервалах и .0 | 0 | 202,5 | 0,85355342 |
3 | -0,00080306 | 207 | 0,6893642 |
6 | -0,00119426 | 210 | 0,57635189 |
9 | -0,00261932 | 213 | 0,4614465 |
12 | -0,00448897 | 216 | 0,34549155 |
15 | -0,00667995 | 219 | 0,22934931 |
18 | -0,00903692 | 222 | 0,1138931 |
21 | -0,01137519 | 225 | 0,00000002 |
24 | -0,01312438 | 228 | -0,11145712 |
27 | -0,01512438 | 231 | -0,21961736 |
30 | -0,01604446 | 234 | -0,32363903 |
33 | -0,01597149 | 237 | -0,42270819 |
36 | -0,01462203 | 240 | -0,5160445 |
39 | -0,01170562 | 243 | -0,60290965 |
42 | -0,00692866 | 246 | -0,65261345 |
45 | 0,00000002 | 249 | -0,75452006 |
48 | 0,00936458 | 252 | -0,81805397 |
51 | 0,02143757 | 255 | -0,87270535 |
54 | 0,03647455 | 258 | -0,91803444 |
57 | 0,0547098 | 261 | -0,95367586 |
60 | 0,07635185 | 264 | -0,97934187 |
63 | 0,10157893 | 267 | -0,99482505 |
66 | 0,1305352 | 270 | -1 |
67,5 | 0,14644661 |
Из таблицы легко усматриваются следующие гипотезы: корнями уравнения, принадлежащими отрезку
, являются числа: ; ; . Непосредственная проверка подтверждает эту гипотезу.Ответ.
; ; .ТРИГОНОМЕТРИЧЕСКИЕ НЕРАВЕНСТВА
При решении тригонометрических неравенств вида
, где --- одна из тригонометрических функций, удобно использовать тригонометрическую окружность для того, чтобы наиболее наглядно представить решения неравенства и записать ответ. Основным методом решения тригонометрических неравенств является сведение их к простейшим неравенствам типа . Разберём на примере, как решать такие неравенства.Пример Решите неравенство .
Решение. Нарисуем тригонометрическую окружность и отметим на ней точки, для которых ордината превосходит
.Для
решением данного неравенства будут . Ясно также, что если некоторое число будет отличаться от какого-нибудь числа из указанного интервала на , то также будет не меньше . Следовательно, к концам найденного отрезка решения нужно просто добавить . Окончательно, получаем, что решениями исходного неравенства будут все .Ответ.
.Для решения неравенств с тангенсом и котангенсом полезно понятие о линии тангенсов и котангенсов. Таковыми являются прямые
и соответственно (на рисунке (1) и (2)), касающиеся тригонометрической окружности.Легко заметить, что если построить луч с началом в начале координат, составляющий угол
с положительным направлением оси абсцисс, то длина отрезка от точки до точки пересечения этого луча с линией тангенсов в точности равна тангенсу угла, который составляет этот луч с осью абсцисс. Аналогичное наблюдение имеет место и для котангенса.Пример Решите неравенство .
Решение. Обозначим
, тогда неравенство примет вид простейшего: . Рассмотрим интервал длиной, равной наименьшему положительному периоду (НПП) тангенса. На этом отрезке с помощью линии тангенсов устанавливаем, что . Вспоминаем теперь, что необходимо добавить , поскольку НПП функции . Итак, . Возвращаясь к переменной , получаем, что .